regulations in other countries. Reader agrees to comply strictly with all such regulations and acknowledges that Reader has the responsibility to obtain licenses to export, re-export, or import the Document and any Compliant Products.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>9</td>
</tr>
<tr>
<td>Intended audience</td>
<td>10</td>
</tr>
<tr>
<td>Document conventions</td>
<td>10</td>
</tr>
<tr>
<td>Conventions for storage capacity values</td>
<td>11</td>
</tr>
<tr>
<td>Accessing product documentation</td>
<td>11</td>
</tr>
<tr>
<td>Getting help</td>
<td>12</td>
</tr>
<tr>
<td>Comments</td>
<td>12</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>About nondisruptive migration</td>
<td>14</td>
</tr>
<tr>
<td>Choosing a nondisruptive migration solution</td>
<td>14</td>
</tr>
<tr>
<td>How nondisruptive migration works</td>
<td>15</td>
</tr>
<tr>
<td>Understanding the HCS nondisruptive migration workflow</td>
<td>19</td>
</tr>
<tr>
<td>About the migration project model</td>
<td>27</td>
</tr>
<tr>
<td>2 Requirements and restrictions</td>
<td>29</td>
</tr>
<tr>
<td>System requirements</td>
<td>30</td>
</tr>
<tr>
<td>Operational limits and restrictions</td>
<td>31</td>
</tr>
<tr>
<td>Migration of existing ShadowImage copy pairs</td>
<td>33</td>
</tr>
<tr>
<td>ShadowImage multi-target and cascade configurations</td>
<td>34</td>
</tr>
<tr>
<td>Restrictions on copy pair operations during migration</td>
<td>34</td>
</tr>
<tr>
<td>Migration of copy types not supported by the HCS nondisruptive migration workflow</td>
<td>36</td>
</tr>
<tr>
<td>TrueCopy volumes</td>
<td>36</td>
</tr>
<tr>
<td>Universal Replicator volumes</td>
<td>38</td>
</tr>
<tr>
<td>External volumes</td>
<td>40</td>
</tr>
<tr>
<td>3 Planning your migration</td>
<td>43</td>
</tr>
<tr>
<td>Planning considerations</td>
<td>44</td>
</tr>
<tr>
<td>Nondisruptive migration and system performance</td>
<td>45</td>
</tr>
</tbody>
</table>
4 Preparing the migration environment

Understanding migration projects and jobs
Navigating migration projects and jobs
Preparing storage resources for migration
Creating a migration project
Creating a migration job
Creating a DP pool

5 Performing the migration

Migrating volumes to the target storage system
Step 1: Virtualize and Allocate Volumes
Step 2: Change host I/O paths
Step 3: Unallocate source volumes
Step 4: Nondisruptive migration
Step 5: Unvirtualize source volumes
Migrating copy pair configurations to the target storage system
Preparing target secondary volumes
Allocating target secondary volumes
Migrating configuration definition files
Creating copy pairs on the target storage system

6 Managing migration projects and jobs

Tracking migration project status
Tracking migration job status
Editing a migration project
Changing the status of a failed migration job
Editing a migration job
Editing virtual storage machines
Canceling a migration job
Canceling a volume from a migration job
Deleting a migration project

7 Completing the migration

Removing the source storage system from Hitachi Command Suite
Optimizing the target storage configuration
Reclaiming zero pages for target volumes

8 Troubleshooting

About troubleshooting
How to use this chapter
Troubleshooting the creation of a migration project
Troubleshooting a migration job
 Migration job fails with KAIC08564-E error message
Backing out of a migration
 Backout procedure
Obtaining input for Device Manager CLI commands
Device Manager CLI examples
Relationship between GUI and CLI output items
This guide explains how to perform a nondisruptive migration.

- Intended audience
- Document conventions
- Conventions for storage capacity values
- Accessing product documentation
- Getting help
- Comments
Intended audience

Nondisruptive migration is intended for expert users. The migration process requires detailed planning and in-depth knowledge. We recommend that you consider the nondisruptive migration services available to assist or manage your migration project. See Choosing an NDM solution on page 14 for more information.

Document conventions

This document uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold</td>
<td>Indicates text on a window, other than the window title, including menus, menu options, buttons, fields, and labels. Example: Click OK.</td>
</tr>
<tr>
<td>Italic</td>
<td>Indicates a variable, which is a placeholder for actual text provided by the user or system. Example: copy source-file target-file</td>
</tr>
<tr>
<td></td>
<td>Note: Angled brackets (< >) are also used to indicate variables.</td>
</tr>
<tr>
<td>Monospace</td>
<td>Indicates text that is displayed on screen or entered by the user. Example: pairdisplay -g oradb</td>
</tr>
<tr>
<td>< > angled brackets</td>
<td>Indicates a variable, which is a placeholder for actual text provided by the user or system. Example: pairdisplay -g <group></td>
</tr>
<tr>
<td>[] square brackets</td>
<td>Indicates optional values. Example: [a</td>
</tr>
<tr>
<td>{ } braces</td>
<td>Indicates required or expected values. Example: { a</td>
</tr>
<tr>
<td></td>
<td>vertical bar</td>
</tr>
<tr>
<td></td>
<td>[a</td>
</tr>
<tr>
<td></td>
<td>{ a</td>
</tr>
</tbody>
</table>

This document uses the following icons to draw attention to information:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note</td>
<td>Calls attention to important or additional information.</td>
</tr>
<tr>
<td></td>
<td>Tip</td>
<td>Provides helpful information, guidelines, or suggestions for performing tasks more effectively.</td>
</tr>
</tbody>
</table>
Conventions for storage capacity values

Physical storage capacity values (for example, disk drive capacity) are calculated based on the following values:

<table>
<thead>
<tr>
<th>Physical capacity unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kilobyte (KB)</td>
<td>1,000 ((10^3)) bytes</td>
</tr>
<tr>
<td>1 megabyte (MB)</td>
<td>1,000 KB or 1,000(^2) bytes</td>
</tr>
<tr>
<td>1 gigabyte (GB)</td>
<td>1,000 MB or 1,000(^3) bytes</td>
</tr>
<tr>
<td>1 terabyte (TB)</td>
<td>1,000 GB or 1,000(^4) bytes</td>
</tr>
<tr>
<td>1 petabyte (PB)</td>
<td>1,000 TB or 1,000(^5) bytes</td>
</tr>
<tr>
<td>1 exabyte (EB)</td>
<td>1,000 PB or 1,000(^6) bytes</td>
</tr>
</tbody>
</table>

Logical storage capacity values (for example, logical device capacity) are calculated based on the following values:

<table>
<thead>
<tr>
<th>Logical capacity unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 block</td>
<td>512 bytes</td>
</tr>
<tr>
<td>1 KB</td>
<td>1,024 ((2^{10})) bytes</td>
</tr>
<tr>
<td>1 MB</td>
<td>1,024 KB or 1,024(^2) bytes</td>
</tr>
<tr>
<td>1 GB</td>
<td>1,024 MB or 1,024(^3) bytes</td>
</tr>
<tr>
<td>1 TB</td>
<td>1,024 GB or 1,024(^4) bytes</td>
</tr>
<tr>
<td>1 PB</td>
<td>1,024 TB or 1,024(^5) bytes</td>
</tr>
<tr>
<td>1 EB</td>
<td>1,024 PB or 1,024(^6) bytes</td>
</tr>
</tbody>
</table>

Accessing product documentation

Product user documentation is available on the Hitachi Data Systems Portal: https://portal.hds.com. Check this site for the most current documentation, including important updates that may have been made after the release of the product.
Getting help

[Hitachi Data Systems Support Portal](https://portal.hds.com) is the destination for technical support of your current or previously-sold storage systems, midrange and enterprise servers, and combined solution offerings. The Hitachi Data Systems customer support staff is available 24 hours a day, seven days a week. If you need technical support, log on to the Hitachi Data Systems Support Portal for contact information: https://portal.hds.com.

[Hitachi Data Systems Community](community.hds.com) is a new global online community for HDS customers, partners, independent software vendors, employees, and prospects. It is an open discussion among these groups about the HDS portfolio of products and services. It is the destination to get answers, discover insights, and make connections. The HDS Community complements our existing Support Portal and support services by providing an area where you can get answers to non-critical issues and questions. **Join the conversation today!** Go to community.hds.com, register, and complete your profile.

Comments

Please send us your comments on this document to doc.comments@hds.com. Include the document title and number, including the revision level (for example, -07), and refer to specific sections and paragraphs whenever possible. All comments become the property of Hitachi Data Systems Corporation.

Thank you!
Introduction

This chapter explains the key concepts behind nondisruptive migration, how it functions, and includes a detailed walk-through of the migration workflows.

- About nondisruptive migration
- Choosing a nondisruptive migration solution
- How nondisruptive migration works
- Understanding the HCS nondisruptive migration workflow
- About the migration project model
About nondisruptive migration

Nondisruptive migration makes it possible to relocate data from existing Hitachi Universal Storage Platform V/VM storage systems to a Virtual Storage Platform G1000 system without interrupting access by hosts. This is accomplished using the global storage virtualization technology of Virtual Storage Platform G1000. Resources on the source storage system are virtualized on the target storage system. From the perspective of the host, I/O requests continue to be serviced by the source storage system during the migration process.

Nondisruptive migration offers several other benefits:

- You can maintain data replication throughout the migration process by allowing the target storage system to inherit pair configurations before migrating the actual data.
- You can reduce the overall migration effort by migrating existing configuration definition files instead of reconfiguring pairs on the target storage system.
- The migration process is designed to be carried out in stages rather than all at once.
- You can monitor the migration progress with both numerical and graphical data.
- Up to seven USP V/VM storage systems can be consolidated into a single VSP G1000.

Choosing a nondisruptive migration solution

Because no single migration solution is appropriate for every environment, multiple nondisruptive migration options are available:

- **End user nondisruptive migration**: You manage the entire migration process from planning to execution as described in this guide. The HCS nondisruptive migration workflow provides an easy-to-use navigation and streamlines the complex migration steps. It is designed for straightforward configurations and customers with in-depth knowledge of their environment and a complete understanding of the risks associated with data migration.

- **Nondisruptive migration planning service**: Because planning is the most crucial stage of the migration process, this option is strongly recommended for all customers using the end user migration solution. This invaluable service from Hitachi Data Systems Global Solution Services (GSS) helps you plan a migration that best suits your environment and needs.

- **Full nondisruptive migration service**: This option is for configurations that are not suitable for the end user solution. Hitachi Data Systems GSS
has highly trained, experienced data migration consultants. GSS has extensive heterogeneous storage migration consulting expertise, as well as best practices that reduce migration risk.

Note: Carefully review the requirements and restrictions provided in the planning chapter of this guide. A thorough assessment of your environment will help you choose the most appropriate solution.

How nondisruptive migration works

The nondisruptive migration process is based on three mechanisms:
- Global storage virtualization
- I/O control
- Volume Migration

Note: This topic only describes the migration of primary volumes because secondary volumes are re-created on the target system at a subsequent point in the migration process (described later in this chapter).

Global storage virtualization

This is the primary mechanism of nondisruptive migration:
- A virtual storage machine is created in the target storage system, a representation of the source storage system that behaves exactly like its physical counterpart (with the same name and serial number (S/N) as the hardware).
- The source volume is mapped within the virtual storage machine as a virtual device (with the same LDEV ID as the source volume). This is known as the target volume.

I/O control

I/O control maintains the multipath device in the source and target storage systems:
• As shown in the following figure, after the volume is mapped, reads and writes are performed using the source volume as the master. This is known as *cache through* mode, and is in effect while the volume on the source storage system remains connected to the host:

- When the host issues a write request, data is written to the source storage system without using the cache of the target storage system (red line in the figure).
- When the source storage system receives all the data to be written from the host, the source storage system informs the host that the processing has completed.
- When the host issues a read request, data from the source storage system is used (blue line).

• After you confirm that the connection between the host and the volume on the source storage system has been disabled (the LUN paths are deleted), the cache is switched to *write sync* mode and the target storage system becomes the master of I/O operations. The numbers of the following I/O operations correspond to the numbers in the figure.
 1. The target system sends I/O received from the host to the source system.
 2. The source system writes data to the source volume and responds to the target system.
 3. The target system writes data to the target volume and responds to the host.

Note: In write sync mode, when the host issues a read request while data is being written to the source storage system, the read processing does not start until the write is complete.
Volume Migration

Before migration, the data resides on a volume on the source storage system. This is the stage where the data is copied from the virtualized source volume to a physical volume on the target storage system, known as the target volume for data migration. Volume Migration uses cached data for reads and writes, reducing the demand on the source storage system and accelerating the migration process. When the data migration is complete, the IDs of the target volume and the target volume for data migration are swapped and the (now redundant) volume is deleted.
Understanding the HCS nondisruptive migration workflow

The HCS nondisruptive migration workflow consists of two parts: The primary workflow is strictly for data migration, and the secondary workflow is for the migration of copy pair configurations. The following diagram shows the order of the tasks in the migration process. Each task corresponds to a selection in the HCS nondisruptive migration workflow GUI.

Note: The copy pair migration workflow can be started any time after **Step 3: Unallocate Source Volumes** in the primary (data migration) workflow, but it must be completed before proceeding to **Step 5: Unvirtualize Source Volumes**. In the interests of data protection, it is ideal to complete the workflow prior to starting **Step 4: Nondisruptive Migration**.

Data migration workflow

1. **Virtualize and Allocate Volumes**

 As shown in the following diagram, after a virtual storage machine is created on the target storage system, the source volume is virtualized as the target volume and allocated to the same host as the source volume.
This ensures that the LUN path between the source storage system and the host is duplicated on the target side.

2. **Change Host I/O Paths**

The HCS nondisruptive migration workflow prompts you to perform the following operations manually:

- Initiate I/O between the target storage system and the host.
- Disable I/O between the source storage system and the host.

You must do this using path management software (such as Dynamic Link Manager), OS native multipath functions, or by changing the zoning
configuration. When you confirm that the switch was successful, the I/O path is changed as shown in the figure.

3. **Unallocate Source Volumes**

To prevent the host from accessing the source volume through the source storage system, the LUN path must be deleted between the source volumes and the host. After you confirm the path deletion in the
GUI, HCS changes the cache mode of the target volume from *cache through* to *write sync*.

4. **Nondisruptive Migration**

 In this step, the data is copied to its final destination on the target storage system. When the migration is finished, the LDEV ID and host...
I/O associated with the target volume are swapped with those of the target volume for data migration, as shown in the following figure.

5. **Unvirtualize Source Volumes**

When the migration is complete, you must confirm that the source volumes on the target storage system are ready to be *unvirtualized*, where the LUN paths between the source volume and target storage system are deleted. (The deletion of the actual source volumes is not
part of the nondisruptive migration workflow but is part of the process described in *Completing the migration on page 83.*

Copy pair migration workflow

The following steps comprise the secondary workflow for migrating existing ShadowImage copy pair configurations.

1. **Prepare Target Secondary Volumes**
 To duplicate the copy pair configurations of the source storage system, the GUI directs you to create the (ShadowImage) secondary volumes on the target storage system. Virtual IDs are assigned to the volumes, and
LUN paths are configured to ports according to the mapping defined in the migration project.

2. **Allocate Secondary Volumes**

To ensure that the backup server can access the secondary volumes on the target storage system (rather than those on the source storage system), you must delete the backup server WWN from the host group of
the source storage system, and then add the backup server WWN to the host group of the target storage system.

3. Migrate Config Files
The configuration definition files available for migration are listed for selection in the GUI for use on the target storage system.

Note: Repeat this step for all the configuration definition files on each pair management server if the pair management servers are in a redundant configuration. See Migration of existing ShadowImage copy pairs on page 33 for a list of configuration definition file requirements.
4. **Create ShadowImage Pairs**
 Using the Change Pair Status wizard, you create the necessary ShadowImage pairs in the target storage system using the migrated configuration definition files.

About the migration project model

A nondisruptive migration can be a lengthy undertaking depending on the amount of data to be moved. To assist you in this process, the HCS nondisruptive migration workflow uses a model that divides a migration project into jobs, as illustrated in the following diagram.
A migration project consists of:

- The selected source and target storage systems
- Port mappings that allow host I/O paths to be switched between source storage system and the target
- External path settings that define the physical connections between the two storage systems
- One or more jobs that divide the total number of volumes to be migrated into logical, manageable units

A migration project might consist of a few jobs that take a day each to complete, or many jobs to be run over the course of weeks. When you have designed and created a set of jobs, you execute each one using the same step-by-step procedure under the guidance of the HCS nondisruptive migration workflow. (HCS also provides tabular and graphical displays to help you keep track of the progress of individual jobs or the entire project.)

Migrating a large number of volumes is time-consuming and can affect performance. The most critical decision is how to divide the source volumes into a series of migration jobs. Depending on the complexity of your environment, this can be as simple as defining a job according to the host or organization with which the volumes are associated. Jobs are the core element of your migration planning effort.
Requirements and restrictions

This chapter establishes the system requirements for nondisruptive migration and restrictions that affect specific operations. It also explains the difference between what is supported by the HCS nondisruptive migration workflow and what can be done manually using the functions of Hitachi Command Suite.

- System requirements
- Operational limits and restrictions
- Migration of existing ShadowImage copy pairs
- Migration of copy types not supported by the HCS nondisruptive migration workflow
System requirements

This table list the hardware, software, and configuration requirements for nondisruptive migration.

Table 2-1 System requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirements</th>
</tr>
</thead>
</table>
| Target storage system | • Model: VSP G1000
• Microcode: 80-02-0x or later
• Licenses: nondisruptive migration, Resource Partition Manager, ShadowImage (if migrating copy pair configurations) |
| Source storage system | • Model: USP V/VM
A service engagement is required for migrating data from VSP volumes and volumes that were previously migrated to VSP from Hitachi USP/NSC storage systems.
• Microcode: 60-08-51 or later
• Licenses: No additional licenses required |
| User interface | Hitachi Command Suite: v8.1.1 or later |
| Host server | The host server connected to the source storage system must be supported by the VSP G1000.
For the latest information about supported host OS and multipath software, see the nondisruptive migration support matrix at http://www.hds.com/products/interoperability/.
Caution: The procedures for operating a server are established by the standards and specifications of the vendor. Server behavior is affected by factors such as the OS, multipath software, HBAs, drivers, switches, and cable connections. Before starting a migration, we strongly recommend that you investigate and test server behavior (for example, when adding alternate paths to the target storage system or when recognizing devices). |
| Management server | You must have a management server running Hitachi Command Suite. For details about the management server system requirements, such as supported operating systems, see *Hitachi Command Suite System Requirements*.
The management server requires the following licenses:
• Device Manager
• Hitachi Tiered Storage Manager |
| Pair management server | If you plan to migrate copy pair configurations, the following must be installed on the pair management server:
• Device Manager Agent 8.1.1 or later
• CCI 01-32-03/XX or later |
| Source volumes | The following volumes can be used as migration source volumes:
• Emulation type: OPEN-V or OPEN-3/8/9/E/K/L
• Volume type: internal, external, LUSE. For details about external volumes, see [External volumes on page 40](#).
• Maximum capacity: 4 TB (8,589,934,592 blocks)
• Maximum number of source volumes per storage system: 65,279
• Dynamic Provisioning virtual volumes |
Operational limits and restrictions

The following tables include limits and restrictions that apply to nondisruptive migration.

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>When you migrate the data from a Dynamic Provisioning virtual volume, the target volume does not take over the page assignment status of the source volume. Therefore, you must use pools with a capacity consistent with the pool capacity of the source virtual volumes.</td>
<td>Dynamic Tiering virtual volumes Dynamic Tiering volumes can be used as migration target volumes. Verify that any target destination pool has free capacity consistent with the total allocated capacity of the source volumes. (After migration you may be able to reduce capacity with the Zero Page Reclamation feature.) ShadowImage primary volumes. For details, see Requirements for migrating existing copy pair configurations on page 33. TrueCopy primary volumes are not supported by the HCS nondisruptive migration workflow. For details, see TrueCopy volumes on page 36. Universal Replicator primary volumes are not supported by the HCS nondisruptive migration workflow. For details, see Universal Replicator volumes on page 38.</td>
</tr>
<tr>
<td>Data on the following volumes cannot be migrated:</td>
<td>Multiplatform volumes (for example: 3390-3A) Command devices Thin Image or Copy-on-Write Snapshot pair volumes Secondary volumes of ShadowImage, TrueCopy, or Universal Replicator Virtual volumes of Thin Image or Copy-on-Write Snapshot Volumes on which Data Retention Utility is set Volumes on which Database Validator is set DP-VOLs with Product ID OPEN-0V (created using Dynamic Provisioning version 60-02-04 or earlier) Internal volumes with Product ID OPEN-0V (containing data migrated using Volume Migration from a DP-VOL created using Dynamic Provisioning version 60-02-04 or earlier)</td>
</tr>
<tr>
<td>Target volumes</td>
<td>The following volumes can be used as migration target volumes: Emulation type: OPEN-V Maximum capacity: 4 TB (8,589,934,592 blocks) Volume type: internal, external, Dynamic Provisioning virtual volume Maximum number of target volumes per storage system: 65,279 If the VSP G1000 is already in use, the LDEV IDs available for migration target volumes are limited. (LDEV IDs that are already in use cannot be used for migration target volumes.)</td>
</tr>
<tr>
<td></td>
<td>The following volumes cannot be used as migration target volumes: Thin Image pair volumes Nondisruptive migration does not support Thin Image pair volumes. If you are using Thin Image in the source storage system, you must re-create the Thin Image pairs on the target storage system after data migration is complete. Dynamic Provisioning pool volumes Volumes on which Cache Residency Manager is set</td>
</tr>
</tbody>
</table>
Table 2-2 Migration and virtualization limits

<table>
<thead>
<tr>
<th>Item</th>
<th>Limit</th>
</tr>
</thead>
</table>
| Source-to-target connections | • Maximum number of source storage systems connected to one target storage system: 7
| | • Maximum number of target storage systems connected to one source storage system: 1 |
| Virtual ID limits per target storage system | • Maximum number of resource groups on which virtual IDs can be set: 1,023 (excludes resource group #0)
| | • Maximum number of volumes on which virtual IDs can be set: 65,279 |
| Maximum number of migration projects per target storage system | 7 |
| Maximum number of migration projects per source storage system | 1 |
| Maximum number of migration jobs that can run concurrently | 10 |
| Maximum number of volumes per migration job | 500 |
| Maximum number of hosts per migration job | 100 |

Table 2-3 Restrictions

<table>
<thead>
<tr>
<th>Item</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>System option mode 313</td>
<td>If system option mode 313 is set for the source storage system, you must set it for the target storage system.</td>
</tr>
<tr>
<td>Host mode and host mode option of host groups</td>
<td>The source and target storage systems must use the same host mode and host mode options for host groups connected to the server.</td>
</tr>
<tr>
<td>Security authentication function (FCSP Authentication)</td>
<td>Do not set the security authentication function (FCSP Authentication) for the port of target storage system, or you may not be able to log in from the server.</td>
</tr>
<tr>
<td>Volume formatting and shredding</td>
<td>You cannot format or shred the mapping volumes on which you are migrating the data in the target storage system.</td>
</tr>
<tr>
<td>Microcode version of MPs</td>
<td>Ensure the microcode version of the source or the target storage system is the same for all MPs.</td>
</tr>
<tr>
<td>SCSI-2 Reserve and SCSI-3 Persistent Reserve commands</td>
<td>If the server issues SCSI-2 Reserve or SCSI-3 Persistent Reserve commands, do not connect the server to the same ports as those connected to the target storage system. Use physically separate ports for the server and the target storage system.</td>
</tr>
</tbody>
</table>
| SCSI-2 Reserve and SCSI-3 Persistent Reserve commands and target volume cache mode | When the server issues SCSI-2 Reserve or SCSI-3 Persistent Reserve commands and the cache mode of the target volume is set to cache through:
 • Do not change the path definition of the port for the data migration on the source storage system.
 • The Reserve or Persistent Group Reserve information is not displayed on the LUN Management window of the target storage system. Instead, check the information in the LUN Management window of the SVP of the source storage system. |
Migration of existing ShadowImage copy pairs

The HCS nondisruptive migration workflow supports the migration of existing ShadowImage copy pairs. This is accomplished by migrating configuration definition files (also known as HORCM or config files) to the target storage system. Because the workflow replicates the copy pair configurations on the target storage system before migrating the data, the pair configurations are inherited when you move the data to the target storage system.

Note: Non-ShadowImage copy pairs are not supported by the HCS nondisruptive migration workflow. Other copy pair types (such as Universal Replicator) must be set up manually after the migration process is complete. See Migration of copy types not supported by the HCS nondisruptive migration workflow on page 36 for more information.

Requirements

The following requirements apply to the contents of configuration definition files:

- Files must be in HORCM_LDEV format. (This is the default format used by Replication Manager.) If your configuration definition files are in another format (such as HORCM_LDEVG), you must convert them manually before they can be used in a migration project. When creating a project, you are presented with a list of configuration definition files. Invalid files are marked as non-migratable. In addition, all the source storage system configuration definition files are copied to a backup location. For details, see Creating a migration project (wizard) on page 54.

- All volumes must be ShadowImage.
- No virtual command devices are permitted.
- All copy pairs must belong to the source storage system.
- All copy pairs must have entities.
- All copy pairs must have the same copy direction within a copy group.

Restrictions

The following restrictions apply to copy pair operations and configurations:
• From the time you create a migration project until the project completes, do not perform any copy pair operations on the source storage system that are not part of the migration workflow.
• If any existing Replication Manager tasks are scheduled to change the status of a copy pair that is part of your planned migration, be sure and cancel such tasks before starting the migration.
• Migrating the copy pair configuration migrates only the primary volumes; the secondary volumes are re-established as part of the workflow.
• If any copy pairs use the same primary volume, define the copy pairs in separate copy groups.

ShadowImage multi-target and cascade configurations

The HCS nondisruptive migration workflow only supports a subset of possible multi-target and cascade configurations. For extended configurations like the ones described in this topic, you must create the additional copy pairs separately after the migration is complete:
• The third and succeeding secondary volumes in the first layer
• The second secondary volume in the second layer

Restrictions on copy pair operations during migration

There are certain restrictions on copy pair operations during data migration. (After the migration is complete, these restrictions no longer apply.)
The following table correlates the availability of ShadowImage pair operations with the status of the Volume Migration pair.

Table 2-4 Volume Migration status and ShadowImage operations

<table>
<thead>
<tr>
<th>Volume Migration pair status during data migration</th>
<th>Availability of ShadowImage pair operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Create pair</td>
</tr>
<tr>
<td>SMPL</td>
<td>Yes</td>
</tr>
<tr>
<td>SMPL(PD)</td>
<td>No</td>
</tr>
<tr>
<td>COPY</td>
<td>No</td>
</tr>
<tr>
<td>PSUS</td>
<td>No</td>
</tr>
<tr>
<td>PSUE</td>
<td>No</td>
</tr>
</tbody>
</table>

The following table correlates the availability of Volume Migration pair operations with the status of the ShadowImage pair.

Table 2-5 Volume Migration pair operations and ShadowImage pair status

<table>
<thead>
<tr>
<th>Status of ShadowImage pairs</th>
<th>Availability of Volume Migration pair operations during data migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPL</td>
<td>Yes</td>
</tr>
<tr>
<td>SMPL(PD)</td>
<td>Yes</td>
</tr>
<tr>
<td>COPY(PD)/COPY</td>
<td>Yes</td>
</tr>
<tr>
<td>PAIR</td>
<td>Yes</td>
</tr>
<tr>
<td>PSUS</td>
<td>Yes</td>
</tr>
<tr>
<td>COPY(RS)/COPY</td>
<td>Yes</td>
</tr>
<tr>
<td>PSUE</td>
<td>Yes</td>
</tr>
<tr>
<td>COPY(SP)/COPY</td>
<td>No</td>
</tr>
<tr>
<td>PSUS(SP)/PSUS</td>
<td>No</td>
</tr>
</tbody>
</table>

Restrictions on other copy pair types

TrueCopy and Universal Replicator pair operations are also restricted during volume migration. The following table correlates the availability of TrueCopy and Universal Replicator operations with the status of the Volume Migration pair.

Table 2-6 Volume Migration status and remote copy operations

<table>
<thead>
<tr>
<th>Volume Migration pair status during data migration</th>
<th>Availability of TrueCopy/Universal Replicator operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Create pair</td>
</tr>
<tr>
<td>SMPL</td>
<td>Yes</td>
</tr>
</tbody>
</table>
As shown in following table, there are no restrictions on Volume Migration operations due to the status of the TrueCopy or Universal Replicator pair.

Table 2-7 Volume Migration operations and copy pair status

<table>
<thead>
<tr>
<th>TrueCopy/Universal Replicator pair status</th>
<th>Availability of Volume Migration operation during data migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPL</td>
<td>Yes</td>
</tr>
<tr>
<td>COPY</td>
<td>Yes</td>
</tr>
<tr>
<td>PAIR</td>
<td>Yes</td>
</tr>
<tr>
<td>PSUS</td>
<td>Yes</td>
</tr>
<tr>
<td>PSUS (PFUS)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Migration of copy types not supported by the HCS nondisruptive migration workflow

ShadowImage volumes are the only copy type currently supported by the HCS nondisruptive migration workflow. Other copy types must be configured manually after the data migration process is complete.

TrueCopy volumes

You can migrate the data of the primary volumes of TrueCopy pairs. However, you cannot migrate TrueCopy pair configurations using the HCS nondisruptive migration workflow. Instead, migrate the primary volumes using the nondisruptive migration procedure. When the migration is complete, you can create the TrueCopy pairs in the target storage system manually using Replication Manager.

When migrating TrueCopy, the pair status is not retained. Because you are creating the pair after the primary volume data is copied from the source storage system to the target storage system, the pair status at the completion of data migration is PAIR. Also, differential information between the primary and secondary volumes is not retained.
After specifying the consistency group number of the source storage system for the target storage system, and then creating a TrueCopy pair in the target storage system, you can migrate data by consistency group. However, consistency cannot be maintained during data migration.

Note: A service engagement is recommended to migrate TrueCopy pair configurations.

The path from the secondary site server to the storage system of the target secondary site must be disabled during data migration.

Migratable configurations

The primary volume data is copied from the source storage system to the target storage system, and then a TrueCopy pair is created in the target storage system. Therefore, data duplication can be maintained during migration.

You can create the target secondary volumes in the storage system of the source secondary volumes.
Non-migratable configurations

You cannot migrate data for only the primary volume (P-VOL) or only the secondary volume.

Universal Replicator volumes

You can migrate the data of the primary volumes of Universal Replicator pairs. However, you cannot migrate Universal Replicator pair configurations using the HCS nondisruptive migration workflow. Instead, migrate the primary volumes using the nondisruptive migration procedure. When the migration is complete, you can create the Universal Replicator pairs in the target storage system manually using Replication Manager.
Note: A service engagement is recommended to migrate Universal Replicator pair configurations.

When migrating Universal Replicator volumes, the pair status is not retained. Because you are creating the pair after the primary volume data is copied from the source storage system to the target storage system, the pair status at the completion of data migration is PAIR. Also, differential information between the primary volume and the second volumes is not retained.

After specifying the consistency group number of the source storage system for the target storage system and then creating a Universal Replicator pair in the target storage system, you can migrate data by consistency group. However, consistency cannot be maintained during data migration.

The path from the secondary site server to the storage system of the target secondary site must be disabled during data migration.

Migratable configurations

The primary volume data is copied from the source storage system to the target storage system, and then a Universal Replicator pair is created in the target storage system. Therefore, data duplication can be maintained during migration.

Non-migratable configurations

You cannot migrate data for only the primary volume (P-VOL) or only the secondary volume.
External volumes

Nondisruptive migration supports the migration of external volumes of the source storage system.

Migratable configurations

The following figure shows the supported configuration for migrating external volumes.

Non-migratable configurations

If the source storage system and the target storage system share the same external storage system, you cannot migrate the data. This configuration, shown in the following figure, is not supported.
You cannot migrate the data

Source storage system

External storage system

Target storage system
Planning your migration

This chapter describes important planning considerations for a migration. The information in this chapter is general and does not account for the many variations in migration environments. Be sure and read Choosing a nondisruptive migration solution on page 14 for important information about service engagements.

We strongly recommend the nondisruptive migration planning service offered by Hitachi Data Systems Global Solution Services (GSS).

- Planning considerations
- Nondisruptive migration and system performance
Planning considerations

The first stage of a nondisruptive migration project is to create a migration plan based on the source storage system configuration and your performance goals. Coordinate the plan development with data network administrators and host administrators or the administrator of the pair management server. The following table includes key points to consider.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources on the target storage system</td>
<td>Consider capacity, performance, and reliability when designing the configurations of the parity groups and DP pools to which volumes and copy pair configurations can be migrated. Determine the target parity group or DP pool for each volume or ShadowImage secondary volumes. The capacity of a target volume for data migration is the same as the source volume (not just the space currently used). Be careful not to exceed the free capacity of the DP pool of the target storage system.</td>
</tr>
<tr>
<td>Assigning source volumes to migration jobs</td>
<td>You can choose the volumes for a migration job by host, logical group, or individually. This may seem simple in theory, but in practice it is the most crucial decision you will make as part of the migration process. An effective migration requires absolute consistency. For example: • If the server is in a cluster, the entire cluster must be migrated at the same time. • All LUNs on a server must be migrated at the same time. • If a server has multiple HBAs, they must be migrated in the same job.</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Migration may take a long time depending on the number of volumes to be processed. Estimate how long the migration will take (in accordance with your I/O response time and throughput goals) to determine when to migrate, how much data to migrate, and the order in which to migrate the volumes.</td>
</tr>
<tr>
<td>Overall operation time for migration</td>
<td>To estimate the total time required for the data migration, you should account for the following: • Setting cables between the source and target storage systems and between the target storage system and the host • Installing and configuring the target storage system, including microcode and program product licenses • Creating the copy pairs in the target storage system • Creating the Volume Migration pairs in the target storage system</td>
</tr>
<tr>
<td>I/O response and throughput</td>
<td>As part of migration planning, decide the acceptable response time and throughput. Host I/O response time increases during migration operations. For details, see Nondisruptive migration and system performance on page 45.</td>
</tr>
<tr>
<td>Cache load status of the source storage system</td>
<td>Verify that data migration can be done under an acceptable system load. Ideally, the migration should be carried out during periods of low I/O activity to avoid issues with write cache pending.</td>
</tr>
<tr>
<td>Server configuration</td>
<td>Confirm the server configuration for setting alternate paths to the target storage system: • OS: type, version • Multipath software: type, version, multipath setting information • Cluster software: type, version • Hardware: model, CPU • HBA: model, driver, firmware, WWN • Disks: list of disks and settings</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Copy pair configuration</td>
<td>If you are planning to migrate data of local or remote copy pairs in the source storage system, make sure that the configuration is supported by nondisruptive migration. In addition, there are restrictions on copy pair operations during migration. For details, see Migration of existing ShadowImage copy pairs on page 33.</td>
</tr>
<tr>
<td>Access to migrated volumes</td>
<td>During migration, all access to a volume must be via paths to the virtualized volume on the target storage system. The source volume must be unallocated from all paths on the source storage system other than the external ports of the target system. Access from other ports, host groups, or servers to the target storage system volume (such as for clusters, failover, or backup) must be taken into consideration.</td>
</tr>
<tr>
<td>Volume replication</td>
<td>Because only the P-VOLs and the pair configuration are migrated, the S-VOLs on the source storage system remain at the point in time that the migration completes, while the S-VOLs created on the target system pick up at that point. Requirements for access to historical Point in Time copies should be considered. There are also limitations to S-VOL configurations that can be migrated. For details, see ShadowImage multi-target and cascade configurations on page 34.</td>
</tr>
<tr>
<td>External volume configuration</td>
<td>If you are planning to migrate data of external volumes in the source storage system, make sure that the configuration is supported by nondisruptive migration. For details, see External volumes on page 40.</td>
</tr>
</tbody>
</table>

Nondisruptive migration and system performance

This topic explains how data migration operations affect server I/O performance.

Once the source volume has been virtualized, the I/O response time for the path becomes the sum of the response time for source storage system I/O operations (blue line) and the transfer processing time within the target storage system (red line).

![Diagram showing I/O transfer processes in the target storage system](image-url)
Preparing the migration environment

Before host volumes and copy pair configurations can be migrated to the target storage system, migration projects are created, storage resources are prepared, and then migration jobs are created to manage the migration workflow.

- Understanding migration projects and jobs
- Navigating migration projects and jobs
- Preparing storage resources for migration
- Creating a migration project
- Creating a migration job
- Creating a DP pool
Understanding migration projects and jobs

Migration projects and jobs define the scope of nondisruptive migration work to be performed for a source and target storage system. You can create migration projects and jobs (units of work) for up to seven source storage systems connected to one target storage system.

A migration project consists of a single target storage system paired with a single source storage system by using the Create Migration Project wizard. The migration project you create functions as a container for migration jobs.

A migration job consists of the volumes and copy pair configurations to be migrated to the target storage system. You select copy pair configurations, hosts, logical groups, or manually selected volumes when you create a migration job. One or more migration jobs can be created for each migration project.

Because migrating a large number of volumes simultaneously is time-consuming and creates a heavy I/O workload, dividing a migration project into one or more migration jobs helps control the I/O load on both the source and target storage systems.

Migration projects and migration jobs appear on the Mobility tab, in the navigation pane under Migration Projects.

Note: If storage systems are not listed in Migration Projects, target storage systems are not yet registered. If, when you expand the tree for a registered target storage system, source storage systems are not listed, create a migration project for the target storage system and add a source storage system.

Navigating migration projects and jobs

The migration user interface is flexible and provides various methods for performing migration tasks.

On the Mobility tab, when you select Migration Projects and then expand the tree, one or more target storage systems are listed.
Each target storage system can be paired with up to seven (for consolidation purposes) nested source storage systems. This pairing comprises a migration project.

For each source storage system in the tree, one or more nested migration jobs are listed.

When you select a target storage system from the navigation pane:
• Up to seven source storage systems (migration projects) are listed in the source storage systems list in the application pane. Migration project progress for all migration projects and for the entire target storage system is shown with color-coded pie charts labeled by status categories, which include corresponding volume capacity related to the status category. Using a mouse, hover over the pie-charts to see the status category name and related capacity metric, for example, the available free space on the target storage system, or the volume capacity that has been migrated.

• You click links in the Migration Project Progress pane to display migration guidance.

• In the Migration Projects pane, in the table of source storage systems, you can view the overall migration job status (Total Capacity per Task Status).

When you select a source storage system from the navigation pane:
In the Migration Project Progress pane, you can see the migration project progress and status for a single migration project (the selected source and target storage system pair).

You can click links in the Migration Project Progress pane to display guidance. Use the Actions menu to access migration project tasks.

In the Migration Jobs section, you can create migration jobs. You can view or click links for all migration jobs for the migration project. You can view the progress and status of each migration job, including the volume count, total capacity to be migrated, and the status of each step in the migration job.

When you select a migration job from the navigation pane, or click the link for a migration job from the Migration Jobs list, GUI windows guide you through the steps in the workflow:
Migration workflow tabs display for data migration and copy pair configuration steps. If you are migrating copy pair configurations as part of your migration project, a copy pair link is provided as a reminder of where the copy pair workflow is inserted into the data migration workflow. If a step is not complete, a button for performing the step is activated.

In the bottom pane, tabs are available for viewing a migration job by Hosts, Volumes, Config Files (configuration definition files), and Copy Pairs (volumes belonging to a copy pair). Use Column Settings to configure the displayed information for each tab. The Tasks tab provides convenient access to job-specific migration tasks, and provides the Change Failed Task Status button to assist in recovering a stalled migration job.
You can also click the Tasks & Alerts tab to review migration tasks.

Preparing storage resources for migration

Before you can migrate data, you must complete some tasks to prepare storage resources.

This topic describes the basic workflow for preparing resources and creating a migration project, but might not account for other requirements as defined in your migration plan.

Before you create a migration project, perform the following prerequisite tasks:

- For all migration projects (whether you migrate only volumes or migrate both volumes and copy pair configurations):
 - Create a migration plan for each source and target storage system to be paired.
 - Register the target storage system in HCS.
 - Register the source storage system in HCS.
 - Register hosts in HCS that include volumes or copy pair configurations that you intend to migrate. If copy pair configurations are included, refresh the storage system.
 - Install the nondisruptive migration license on the target storage system.
 - Configure the external ports on the target storage system to use for data migration.

- For copy pair configuration migration projects:
Register a host (pair management server) that manages the configuration definition files in HCS, and refresh the storage system.

Create the target storage system command device and allocate it to the pair management server.

Create the command device in the resource group (meta_resource) on the target storage system whose resource group ID is 0.

To connect the command device, use a port that is different from the one that manages the migration target volume that is used for nondisruptive migration.

Disable user authentication for the command device.

Change instances of HORCM_LDEVG to HORCM_LDEV. You cannot migrate configuration definition files in which HORCM_LDEVG is defined. The list of available configuration definition files will not include any configuration definition files in which HORCM_LDEVG is defined.

After you complete the prerequisite tasks, create the migration project using the Create Migration Project wizard:

- Pair the target and source storage systems.
- Create a virtual storage machine on the target storage system.
- If you are using an existing volume as a target S-VOL, you must add the LDEV ID to the virtual storage machine.
- Select the option for migrating copy pair configurations. If you do so, the copy pair configuration migration workflow will be used.
- Set up storage port mappings for host I/O alternate paths.
- Configure external paths for data migration between source and target storage systems.

After you create the migration project, you can create one or more DP pools, if necessary, on the target storage system to provide DP volumes for migration.

Related tasks

- [Creating a migration project](#) on page 54
- [Creating a DP pool](#) on page 58

Creating a migration project

Use the Create Migration Project wizard to pair target and source storage systems, which make up a migration project.

Procedure

1. On the **Mobility** tab, select **Migration Projects**.
2. Expand the tree and select a target storage system.
3. Click **Create Migration Project** to launch the Create Migration Project wizard.

![Create Migration Project wizard]

4. Review the **Introduction** page, and then click **Next**.

5. On the **Virtual Storage Machine Settings** page:
 a. Select a source storage system.
 b. Accept the displayed virtual storage machine name, or enter a valid virtual storage machine name.
 c. (Optional) Select the **Migrate SI Pair Configuration** option to enable migration of copy pair configurations.
 If you select this option, do not make any changes to the configuration definition files until the migration is complete.

Note:
- Valid configuration definition files are indicated by **Yes** in the **Can the Copy Pair be Migrated** column. If **No** appears in this column for one or more of the configuration definition files you want to migrate, click **Cancel**, fix the configuration definition files, refresh hosts and the storage system, and then create the migration project again.
- When you finish creating the migration project, all source storage system configuration definition files are copied to the following locations, whether or not configuration definition files are valid:
 For Windows:
 `Device-Manager-agent-installation-folder\agent\config\migration\backup`
 For UNIX:
6. Click Next.
8. On the Storage Port Mappings page, specify the mapping between the source and target storage ports, and then click Next. You can verify the port details for each selected target storage port in the Port Details table.
9. On the External Path Settings page, configure the external paths between the port of the source storage system and the external port of the target storage system. Click Increase Priority or Decrease Priority to adjust the priority of the path. Click Edit External Paths to verify the external path configuration, to edit external paths using the topographical map or selection table, or to clear external path settings. When you are finished, click Next.
10. On the Show Plan page, confirm that the information in the plan summary and plan details are correct. If changes are required, click Back.
11. (Optional) Update the task name and provide a description.
12. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
13. Click Submit.
 If the task is scheduled to run immediately, the process begins.
14. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result
The migration project is created, and the source storage system is displayed in the Migration Projects tree.

Related concepts
- About the migration project model on page 27

Related tasks
- Deleting a migration project on page 82
- Creating a migration job on page 57

Related references
- Preparing storage resources for migration on page 53
Creating a migration job

A migration job consists of source volumes (which might be copy pair P-VOLs) to be migrated to the target storage system. The volumes are selected by specifying one or more hosts or logical groups, by manually selecting volumes, or by specifying configuration definition files containing copy pair information.

Prerequisites

A migration project must exist for the source and target storage systems.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree and select a source storage system.
3. Click Create Migration Job.
4. Specify a name and description for the migration job.
5. Specify volumes by selecting one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Config Files| Select Config Files when migrating copy pair configurations. This option is available only if you enabled migration of copy pair configurations when you created the migration project.
If you select configuration definition files that define secondary volumes, also select the configuration definition files that define the corresponding primary volumes. |
| Hosts | Select Hosts, and then click Select a Host or Select Hosts to select multiple hosts. |
| Logical Group| Select Logical Group, and then click Select a Logical Group. |
| Manual | Select Manual, and then click Add Volumes in the Selected Volumes table to select source volumes for migration. |

6. (Optional) Update the task name and provide a description.
7. (Optional) Select View task status to monitor the task after it is submitted.
8. Click Submit.
Result

In the migration projects list, the new migration job appears for the source storage system.

Related concepts

• About the migration project model on page 27

Creating a DP pool

You can create an HDP or HDT pool, which provides more efficient use of physical storage for virtual volumes that are allocated to hosts from the DP pool. DP pool performance can be improved if you use the entire capacity of a parity group for a single DP pool.

If target pool capacity is not already available, you can create pools and volumes on the target storage system for the migration of data and copy pair configurations. The HCS nondisruptive migration will create new volumes from existing pools or can be directed to use existing volumes.

Prerequisites

• Register the target storage system.
• When defining an external LDEV tier rank, externally connect a storage system that has multiple performance levels.
• The RAID level and drive specifications in parity groups should be consistent with your performance goals.
• Parity groups must have volumes to be added to a pool.

Note: For HDT pools:

if different drive types and/or RAID levels are mixed in a single tier, they will all be considered equal for data placement regardless of page access frequency. As a result, I/O performance will be dependent on the drive type characteristics and RAID level on which any given page resides.

For HDP pools:

If different drive types and/or RAID levels are mixed in an HDP pool, I/O performance will be dependent on the drive type characteristics and RAID level on which any given page resides.

Procedure

1. On the Resources tab, expand the storage system, list existing DP Pools, and click Create Pool.
2. In the Create Pool dialog box, specify a pool name, and optionally select Reflect this pool name to the storage system.
3. To configure an HDP pool, select a Pool Type of HDP and configure the following:
a. In the **Additional Parity Groups** table, click **Add Parity Groups**.
b. (Optional) Select 'Allow to mix different drive types/speeds, chip types, RAID levels or volume locations' to allow combining resources with different characteristics.
c. Select one or more parity groups, and click **Add to Pool** and then **Close**. The **Pool Summary** information is updated.
d. (Optional) Click **Advanced Options** to configure Pool ID, Used Threshold, Subscription Thresholds, and DP volume protection options, as needed.
e. Go to step 7.

4. To configure an HDT pool, select a **Pool Type** of HDT, and then in the **Additional Parity Groups** table, choose **Standard** or **Mixed** mode to disallow or allow combining resources with different characteristics. For **Mixed** mode, go to step 6.

5. For a **Standard** mode HDT pool, do the following:
 a. Click + to add a new tier.
 b. In the **Add New Tier** dialog box, select a volume to configure Tier 1, and click **Select**. The **Tier Configuration** table in **Pool Summary** is updated.
 c. Click **Add Parity Groups**, select the parity group, click **Add to Pool**, and click **Close**. Select an available parity group that best meets your performance or capacity needs (Tier 1 for best performance, Tier 2 for next best performance, and Tier 3 for capacity).
 d. (Optional) Click + to add Tier 2 and Tier 3, configure the tiers based on your performance and capacity needs using the choices in **Add New Tier** dialog box. The **Tier Configuration** table in **Pool Summary** is updated.

 Tip: To delete an existing tier, click X in the **Tier** tab.

 e. (Optional) Click **Advanced Options** to configure Pool ID, Used Threshold, Subscription Thresholds, and DP volume protection options, as needed.
 f. Click **HDT Options**, and configure the tier management options as needed.
 g. Go to step 7.

6. For a **Mixed** mode HDT pool, do the following:
 a. Click **Add Parity Groups**.

 Note: There are two parity group tab choices from which you can select: **Internal Parity Groups** and **External Parity Groups** (the **Internal Parity Groups** tab is set by default). If you select the **External Parity Groups** tab and select one or more parity groups,
this enables the **External LDEV Tier Rank** menu from which you must choose a ranking for the tier.

b. For mixed mode in the **Internal Parity Groups** tab or the **External Parity Groups** tab, select parity groups that you want to add to the HDT pool, click **Add to Pool**, and click **Close**. The Tier Configuration table in Pool Summary shows the new tier configuration status for each tier.

c. (Optional) Click **Advanced Options** to configure Pool ID, Used Threshold, Subscription Thresholds, and DP volume protection options, as needed.

d. Click **HDT Options**, and configure the tier management options as needed.

7. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

8. (Optional) Update the task name and provide a description.

9. (Optional) Expand **Schedule** to specify the task schedule. You can schedule the task to run immediately or later. The default setting is **Now**.

10. Click **Submit**. If the task is to run immediately, the task begins.

11. You can check the progress and the result of the task on the **Tasks & Alerts** tab. Click on the task name to view details of the task.

Result

Created pools are added to the target storage system DP Pools list.
Performing the migration

This chapter includes a step-by-step breakdown of the wizard-based workflows for migrating volumes and existing ShadowImage copy pairs. Although these wizards take you through the entire process, you can also use these procedures to execute a specific step when necessary.

- Migrating volumes to the target storage system
- Migrating copy pair configurations to the target storage system
Migrating volumes to the target storage system

Volume and copy pair configuration migrations follow a standard workflow. The status of each step in the workflow is displayed as each step is performed so that you can track the progress of the migration. When all steps are completed for all volumes in the migration job, the migration job is complete. When all migration jobs are completed, the migration project is complete.

Step 1: Virtualize and Allocate Volumes
To migrate data, you must virtualize source volumes and allocate them to the target storage system.

Prerequisites
- A migration job must exist for the migration project.
- Verify that the target host is not registered in host groups that have different host modes or host mode options.
- Verify that if the target host is already registered in a host group of the target storage system, that the WWNs of the host group of the target storage system and corresponding host group of the source storage system are the same.

Procedure
1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.

Note: To resume a step for one or more migration job resources, for example, resources with a failed step task or sub-task, select the resources, and from the Data Migration Actions menu, select the step to resume.

4. On the Virtualize Volumes Setting page, verify the source and target storage systems and the migration job name.
5. (Optional) Change the parity group start number setting.
 For example, even though parity groups are automatically numbered starting from 1, you can add another source storage system to a target storage system and select a start number to easily differentiate the source of the parity groups.
6. (Optional) Change the cache logical partition (CLPR) to be used for a migration.
7. (Optional) Specify the initial number of the LDEV ID for the volumes to be added to the virtual storage machine.
8. Verify the external path information, and then click Next.
9. On the Allocate Volumes Setting page, click the Volume Path tab, and confirm the volume path mapping between source and target volumes.
10. Click the Host Group tab and click the provided links to verify host group mapping and other information, such as the scope of LUN Security and that the Host Group Attributes have not changed for the source and target.
11. Click Edit Host Group Setting to verify or change the host group name and the resource group for the host group.
12. Click Next.
13. On the Show Plan page, verify the plan summary and plan details, optionally add a task name and description, and then click Submit.
14. Confirm this task is Completed for the migration job.

Result
Source volumes are virtualized and allocated to hosts in the target storage system.

Related tasks
• Step 2: Change host I/O paths on page 63

Step 2: Change host I/O paths
To redirect host I/O to the target storage system, host I/O paths must be online for the target storage system and offline for the source storage system.

Prerequisites
Volumes must be virtualized and allocated.

Procedure
1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.

Note: To resume performing a step on one or more migration job resources, for example, resources with a failed step task or sub-task, select the resources, and from the Data Migration Actions menu, select the step to resume.

4. In the Change Host I/O Paths window, carefully review the Step 1 instructions for changing and verifying the status of host I/O paths to the target storage system.
Note: This window only displays information about path changes. To change paths, you must use path management software or change zoning settings.

To help you review and make the necessary changes, click Export to CSV to create a file that you can reference for the target LUN path information.

5. Verify the target LUN path information, and then select the check box labeled I have confirmed that all target LUN paths are online.

6. Review the Step 2 instructions for changing and verifying the status of host I/O paths to the source storage system. To help you review the source LUN path information, click Export to CSV to create a file that you can reference.

7. Verify the source LUN path information, and then select the check box labeled I have confirmed that all source LUN paths are offline.

8. (Optional) Update the task name and provide a description.

9. Click OK to submit the task.

10. Confirm this task is Completed for the migration job.

Result

Host I/O paths are online to the target storage system and offline for the source storage system.

Related tasks

- Step 1: Virtualize and Allocate Volumes on page 62
- Step 3: Unallocate source volumes on page 64

Step 3: Unallocate source volumes

Delete the source storage system LUN paths for hosts with migration source volumes, and change the cache mode on the target storage system.

Prerequisites

Host I/O paths must be online for the target storage system and offline for the source storage system.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.
Note: To resume performing a step on one or more migration job resources, for example, resources with a failed step task or sub-task, select the resources, and from the Data Migration Actions menu, select the step to resume.

4. Verify the source LUN path information.
 The target storage system cache mode is automatically changed from Through to Write Sync to forward write I/O to the source storage system volume.

5. (Optional) Update the task name and provide a description.
6. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.

7. Click Submit.
 If the task is scheduled to run immediately, the process begins.
8. Confirm this task is Completed for the migration job.

Result
Source volumes are unallocated from the host, the cache mode is set to Write Sync, and host I/O continues to update the source volume.

Postrequisites
If you are migrating copy pair configurations, follow the copy pair configuration migration workflow before continuing to Step 4: Nondisruptive Migration. Alternatively, you can perform the copy pair configuration migration workflow after nondisruptive migration (step 4) is complete for the P-VOL, but before you unvirtualize the source volumes (step 5).

Related tasks
- Step 2: Change host I/O paths on page 63
- Step 4: Nondisruptive migration on page 65
- Preparing target secondary volumes on page 68

Step 4: Nondisruptive migration
Migrate source volume data to the target volume for data migration.

Note: To maintain copy pair redundancy during volume migration (recommended), complete the copy pair configuration migration workflow before performing nondisruptive migration (step 4). Alternatively, you can perform the copy pair configuration migration workflow after nondisruptive migration (step 4) is complete for the P-VOL, but before unvirtualizing source volumes (step 5).
Prerequisites
Source volumes must be unallocated.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.

Note: To resume performing a step on one or more migration job resources, for example, resources with a failed step task or sub-task, select the resources, and from the Data Migration Actions menu, select the step to resume.

4. Verify the source and target storage systems and migration job name. The estimated migration time is shown for the migration job.
5. Click Set Target Volumes for Data Migration to specify a specific DP pool or parity group for the target volume for data migration, and then select either Create new volumes or Use existing volumes. Click OK.
6. (Optional) Select Zero Page Reclaim to reclaim capacity after migration. This option is enabled by default. Zero page reclaim can take a long time. The estimated time is shown next to the check box. If you clear the check box, you can perform zero page reclaim after the migration job completes.
7. (Optional) Select the option to send email notification to a specified email address when the data migration completes.

Note: Email notifications for Tiered Storage Manager events must be set up in advance. For more information see the Hitachi Command Suite Administrator Guide.

8. (Optional) Update the task name and provide a description.
9. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
10. Click Submit.
 If the task is scheduled to run immediately, the process begins.
11. Confirm this task is Completed for the migration job.

Result
Source volume data is migrated to target volumes for data migration.

Related tasks
- Step 3: Unallocate source volumes on page 64
Step 5: Unvirtualize source volumes

Unvirtualize source storage system volumes in the target storage system.

Prerequisites

- The migration of the data must be completed.
- Copy pair configuration migration workflow steps (started after step 3 or step 4) must be completed.
- If the source volume is a ShadowImage copy pair volume, delete the source storage system copy pair before you unvirtualize the volume.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.

Note: To resume performing a step on one or more migration job resources, for example, resources with a failed step task or sub-task, select the resources, and from the Data Migration Actions menu, select the step to resume.

4. Verify that the Plan Summary information is correct.
5. Verify the list of source volumes to unvirtualize and their corresponding internal volume and parity group information.
6. Verify the external paths to be unallocated.
7. (Optional) Update the task name and provide a description.
8. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
9. Click Submit.
 If the task is scheduled to run immediately, the process begins.
10. Confirm this task is Completed for the migration job.

Result

Source volumes are unvirtualized and the migration job is completed.

Migrating copy pair configurations to the target storage system

Copy pair configurations can be migrated from the source storage system to the target storage system using the copy pair configuration migration.
workflow. Copy pair redundancy can be maintained throughout the migration process. Configuration definition files are backed up, and are inherited by the target storage system for reestablishing copy pairs.

Preparing target secondary volumes

Create S-VOLs on the target storage system. The source S-VOL ID becomes the virtual LDEV ID of target storage system S-VOLs.

Prerequisites

- Source volumes must be unallocated.
- A target storage system command device must be created and allocated to the pair management server.
- The option to migrate copy pair configurations was selected when the migration project was created.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.
3. Verify that steps 1 through step 3 on the Data Migration Workflow tab are completed, and then click the Go to copy pair link.
4. On the Copy Pair Configuration Migration Workflow tab, click Execute for Prepare Target Secondary Volumes.
5. On the Create Target Secondary Volumes page, select the S-VOL, and then click Set Target Secondary Volumes to specify a specific DP Pool or Parity Group for the target S-VOL, and then select Create new volumes or Use existing volumes. If necessary, specify the initial number of the LDEV ID for the volumes to be created on the virtual storage machine, and then click OK.
6. In the Target Pools/Parity Groups Information area, review the capacity changes for DP pools or parity groups.
7. Repeat steps 5 and 6 for each displayed source and target S-VOL pair, and then click Next.
8. On the Set Paths for Target Secondary Volumes page, compare the LUN path between the source secondary volume and the backup server with the corresponding LUN path setting of the target storage system. On the Volumes tab, you can see which backup server is allocated to each volume. On the Host Groups tab, you can compare the host group settings. As required, edit the names of the host groups created on the target storage system and the resource groups in which the host groups will be created. Enter the necessary settings, and then click Next.
9. Review the plan, and then click Submit.
10. Confirm this task is completed.
Result
Target storage system secondary volumes are prepared.

Related tasks
- Step 3: Unallocate source volumes on page 64
- Allocating target secondary volumes on page 69

Allocating target secondary volumes
Delete the backup server paths for source storage system S-VOLs, and then establish backup server paths for target storage system S-VOLs.

Prerequisites
- Source volumes must be unallocated.
- The target storage system secondary volumes are prepared.
- Stop the backup script that is running on the backup server.

Procedure
1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.
4. Note the host group information for the source and target storage systems, which will assist you when you are changing the backup server paths from the source storage system to the target storage system.
5. Delete the source storage system backup server WWN:
 a. Launch Element Manager to run the native management tool for the source storage system to delete the backup server WWN from the host group of the source storage system.
 b. Verify that the backup server WWN has been deleted from the host group of the source storage system.
6. Add the backup server WWN to the target storage system:
 a. On the Resources tab, for the target storage system, select Ports/Host Groups and add the backup server WWN to the host group of the target storage system.
 b. Verify that the backup server WWN has been added to the host group of the target storage system.

Result
Backup server paths for source storage system S-VOLs are deleted, and backup server paths for target storage system S-VOLs are created.

Related tasks
- Step 3: Unallocate source volumes on page 64
- Migrating configuration definition files on page 70
Migrating configuration definition files

For the migration job, selected configuration definition files can be migrated for use on the target storage system.

Prerequisites

- Source volumes must be unallocated.
- Target secondary volumes must be allocated.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.
3. On the Copy Pair Configuration Migration Workflow tab, click Migrate Config Files.
4. Click Add/Remove Config Files.

Note: The configuration definition file to be migrated must be specified in HORCM_LDEV format. Files in which HORCM_LDEVG is defined cannot be migrated and does not appear in the list.

5. Click Add and Remove to populate the list of configuration definition files to be migrated, and then click OK.
6. (Optional) Update the task name and provide a description.
7. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
8. Click Submit.
 If the task is scheduled to run immediately, the process begins.
9. Confirm this task is Completed for the migration job.

Result

Configuration definition files are migrated for use on the target storage system. HORCM instances for the migrated configuration definition files are restarted. If a HORCM instance is running on the source storage system, the configuration definition file is migrated to the target storage system.

Related tasks

- Step 3: Unallocate source volumes on page 64
- Creating copy pairs on the target storage system on page 70

Creating copy pairs on the target storage system

Create ShadowImage pairs on the target storage system based on migrated configuration definition files.
Prerequisites

- Source volumes must be unallocated.
- Migration of configuration definition files must be completed.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.
4. In the Create ShadowImage Pairs dialog box, select the copy group you want.
5. Click Create Copy Pairs.
6. In the Replication Manager Change Pair Status Wizard, on the Select Copy Pairs page, select the copy pair you want and click Next.
7. On the Select Pair Operation page, review the copy pair information and click Next.
8. On the Set Schedule page, select Execute on Schedule to schedule the task for a specific date and time, or select Execute Immediately, and then click Next.

Note: You cannot edit the created task. If you want to reschedule the task, delete it and create a new task.

9. On the Confirm page, verify the copy pair settings, select the check box labeled Yes. I have confirmed the above information and wish to change pair status, and then click Confirm.
10. On the Finish page, confirm the task and then click Finish. The task is registered as a Replication Manager task.
11. To verify the status of the Replication Manager task:
 a. On the Copy Pair Configuration Migration Workflow tab, click View HRpM Tasks to display the Replication Manager task list.
 b. Open the Create ShadowImage Pairs dialog box and check Status.

Result

Copy pairs are created on the target storage system.

Postrequisites

Restart the backup script of the backup server for the target storage system if necessary.

Related tasks

- Step 3: Unallocate source volumes on page 64
- Step 4: Nondisruptive migration on page 65
Managing migration projects and jobs

After migration projects and jobs are initially created, there are a variety of tasks related to the management and maintenance of migration projects and jobs until they are completed.

This chapter describes these tasks and when they should be performed.

- Tracking migration project status
- Tracking migration job status
- Editing a migration project
- Changing the status of a failed migration job
- Editing a migration job
- Editing virtual storage machines
- Canceling a migration job
- Canceling a volume from a migration job
- Deleting a migration project
Tracking migration project status

The progress of migration projects is tracked and displayed graphically.

The following aggregated status information from migration jobs is displayed:

- The total capacity of volumes for a migration project.
 - You can estimate the time required to complete the migration project by reviewing the remaining capacity and up-to-date elapsed time for migrations.
 - You can determine if you need to add physical storage capacity, or create additional DP pools, by comparing the data capacity to be migrated against the free capacity of the target storage system.
- The completion state of migration jobs, which provides a snapshot of remaining migration activity for project completion.

Prerequisites

A migration project with migration jobs must exist.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree and select a target storage system.
3. Track project status. In the Migration Project Progress window, categories (by capacity) are displayed in a pie chart format (using a variety of colors) for both source and target storage systems. Use your mouse to hover over the pie chart slices to review the name of the category and related statistics. The following table describes the color-coded pie chart categories and other status information:

<table>
<thead>
<tr>
<th>Pie chart category</th>
<th>Storage system</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed</td>
<td>Source and Target</td>
<td>The total capacity of the volumes whose data migration is complete, meaning that the (nondisruptive migration) step of the data migration workflow is complete.</td>
</tr>
<tr>
<td>Completed (P-VOL)</td>
<td>Source and Target</td>
<td>If you are migrating copy pair configurations, the total capacity of the source storage system primary volumes whose data migration to the target storage system is complete.</td>
</tr>
<tr>
<td>Completed (S-VOL)</td>
<td>Target</td>
<td>The total capacity of volumes that are created for secondary volumes in the target storage system.</td>
</tr>
<tr>
<td>In Progress</td>
<td>Source and Target</td>
<td>The total capacity of the source storage system volumes that are registered in a migration job and whose data migration to the target storage system is not yet completed. Tasks in this category include those that are in the Waiting for Input (waiting for user input to continue the migration</td>
</tr>
</tbody>
</table>
If free space warnings display, you might need to adjust target storage resources that are available for migration. Migration jobs waiting for input need to be continued, and stalled (failed) migration jobs need to be investigated and resumed.

Tracking migration job status

The status of migration jobs (and steps within the jobs) is displayed for each migration job.

Prerequisites

Migration jobs must exist within a migration project.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree and select a source storage system.
3. In the Migration Jobs list, review the Data Migration Status column for one or more listed migration jobs.

Data migration status values are:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting for Input</td>
<td>Waiting for you to take action.</td>
</tr>
<tr>
<td>Waiting</td>
<td>Scheduled task.</td>
</tr>
<tr>
<td>In Progress</td>
<td>Running task.</td>
</tr>
<tr>
<td>Completed</td>
<td>Successful task.</td>
</tr>
<tr>
<td>Status</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Failed</td>
<td>Unsuccessful step or substep in the task. You must determine the cause and perform recovery steps.</td>
</tr>
<tr>
<td>Waiting for Input (Manually recover)</td>
<td>Waiting for you to take action to recover from a previously failed step or substep in a task. This status indicates that the recovery process involves reverting to a previous state, before the failed task occurred. You set this status as part of the recovery process, and then resume the task to complete the step.</td>
</tr>
<tr>
<td>Completed (Manually recover)</td>
<td>You have resolved an issue that caused a failed state. You set this status as part of the recovery process to clear the failure and allow the migration to proceed.</td>
</tr>
</tbody>
</table>

4. To review detailed migration job status, select a migration job from the tree, or click a migration job link.

5. Check the status of migration steps by clicking the **Hosts, Volumes, Config Files, or Copy Pairs** tabs.

Tip: The Volumes tab provides links for Source and Target volumes, and for each step status, providing direct access to volume details and task status information. Column Settings is configurable for relating volumes to a variety of resources, such as host or virtualized information used for migration.

6. Click the **Tasks** tab to see all migration job related tasks, or click the **Tasks & Alerts** tab, and then click **HCS Tasks** to see all migration tasks for all migration jobs.

Related tasks
- [Tracking migration project status](#) on page 74

Related references
- [Troubleshooting a migration job](#) on page 89

Editing a migration project

After a migration project is created, and before performing data migration, you can edit migration project information.

You can edit the following migration project information:
- Settings for resource groups that are created in the virtual storage machine of the target storage system
- Settings that define the mapping between source and target storage ports
- Settings that define the external paths between the ports of the source storage system and the external ports of the target storage system

Procedure

1. On the **Mobility** tab, select **Migration Projects**.
2. Expand the tree and select a target storage system.
3. In the Migration Projects list, select a migration project.
4. From the Migration Project Actions menu, choose one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Resource Group Mapping</td>
<td>Select the resource groups on the target storage system to map to the resource groups on the source storage system, and then click OK. You can verify the new resource group mapping by opening the Edit Resource Group Mapping dialog box again. Tip: If you change the mapping to the resource groups on the target storage system, the information about the user groups and roles that are assigned to the resource groups on the source storage system are not inherited. Edit the resource group mapping, and then assign resource groups and roles to the user groups on the target storage system.</td>
</tr>
<tr>
<td>Edit Port Mapping</td>
<td>Select the ports of the target storage system to map to the ports of the source storage system, or change the destination of ports that are already mapped, and then click OK. You can verify the new I/O path mapping by opening the Edit Port Mapping dialog box again.</td>
</tr>
<tr>
<td>Edit External Path Setting</td>
<td>Specify paths in accordance with the displayed instructions, and then click Submit. The submitted plan is registered as a task. Check the task results in the Tasks & Alerts tab. You can verify the new external path mapping by opening the Edit External Path Setting dialog box again.</td>
</tr>
</tbody>
</table>

Result
Resource group mapping, port mapping, and external path settings are updated for the migration project.

Related concepts
• About the migration project model on page 27

Related tasks
• Creating a migration project on page 54

Related references
• Preparing storage resources for migration on page 53
• Troubleshooting the creation of a migration project on page 87
Changing the status of a failed migration job

If a task fails, after recovery actions have been performed, change the status of the failed task to continue the migration job.

Prerequisites

You must correct the issue that is causing the failed task or subtask.

Caution: If you do not correct the issue that is causing a failed task or sub-task for a migration step before you change the status of the failed step to Waiting for Input (Manually recover) or Completed (Manually recover) in the Change Failed Task Status dialog box, the step cannot be resumed by using the GUI.

Affected volumes will have to be canceled (deleted) from the migration job, returned to the state before the task was executed, and then a new migration job for the affected volumes created.

For information about how to recover from conditions that cause a failed status at the migration job step or sub-step level, see Troubleshooting a migration job on page 89. In certain cases, it may be preferable to start the migration over from the beginning as described in Backing out of a migration on page 97.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree, and select the migration job with the failed task.
3. On the Volumes or Tasks tab, do one of the following:
 - On the Volumes tab, select the volume for which recovery has been performed, and then from the More Actions menu, select Change Failed Task Status.
 - On the Volumes or Tasks tab, locate the task for which recovery has been performed, click the Failed status link, review task details, and click Change Failed Task Status.
4. On the Change Failed Task Status dialog box, verify the displayed information, and then select the Status Change check box to confirm that recovery has been performed.
5. From the Select a Status list, select one of the following:
 - Waiting for Input (Manually recover): Resumes the task from the step during which the task failed.
 - Completed (Manually recover): Resumes the task from the next step.
6. (Optional) Update the task name and provide a description.
7. (Optional) Select **View task status** to monitor the task after it is submitted.

8. Click **Submit**, and verify the status change for the migration step.

Result

The migration job step status is changed, and you can resume the migration job.

Related tasks

- Tracking migration job status on page 75

Related references

- Troubleshooting a migration job on page 89
- Backing out of a migration on page 97

Editing a migration job

You can change the name or description of a migration job.

Tip: If you want to migrate more volumes, create a new migration job. If you want to stop volume migration, you can cancel a migration job, or delete (cancel) volumes from a migration job.

Procedure

1. On the **Mobility** tab, select **Migration Projects**.
2. Expand the tree for a source storage system, and select a migration job.
3. From the **More Actions** menu, select **Edit Migration Job**.
4. Change the migration job name or description and click **OK**.
5. Verify the results by reviewing the migration job name and description in the **Migration Jobs** list.

Result

The migration job is updated.

Related tasks

- Creating a migration job on page 57

Related references

- Troubleshooting a migration job on page 89

Editing virtual storage machines

You can add resources or remove resources from a virtual storage machine. You can also change the name of the virtual storage machine.
To support global-active device pairs, edit the virtual storage machine to add secondary storage system resources to a default or user-defined virtual storage machine on the primary storage system to provide a single view of the primary and secondary storage system resources.

Prerequisites

From the host, unallocate volumes that are related to resources that belong to the virtual storage machine you are removing.

Procedure

1. On the **Administration** tab, select **Virtual Storage Machine**, select a virtual storage machine in the list, and then click **Edit Virtual Storage Machine**.

 Note: If you are setting up global-active device, click **Edit Virtual Storage Machine** in the **Set Up Global-Active Device** window.

2. Verify the **Name** and **Virtual Model and Serial No.** of the virtual storage machine that you are modifying. If you are setting up a global-active device pair, verify that the virtual storage machine is on the primary storage system.

3. Add or remove resources, such as parity groups or LDEV IDs, for the virtual storage machine. If you are setting up a global-active device pair, click **Add Storage Systems**, select the secondary storage system, and then click **OK**. Then add secondary storage system resources, such as **Parity Groups**, **LDEV IDs**, **Storage Ports**, and **Host Group Numbers** to the virtual storage machine.

 Note: If you are setting up global-active device, the primary storage system resources already belong to the default virtual storage machine.

4. Enter an optional task description, select whether you want to view the progress of the task when the task completes, and then click **Submit**.

5. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

The selected virtual storage machine is edited and can be verified in the list of virtual storage machines. If you are creating a global-active device pair, you have a single view of the primary and secondary storage system resources.
Canceling a migration job

You can delete (cancel) a migration job that has not been started, meaning no migration activity has occurred. After you cancel a migration job, its volumes can be specified as migration source volumes in another migration job.

You can also delete a migration job in progress. However, to use the deleted volumes of migration jobs for other migration jobs, you must manually recover the volumes of the deleted migration jobs.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Select a source storage system.
3. From the Migration Jobs list, select one or more migration jobs.
4. From the More Actions menu, select Cancel Migration Jobs.
5. Verify the displayed information, select the check box to confirm that you have reviewed and understand the plan, and then click Submit.
6. Confirm that the job is deleted by reviewing the migration jobs list again.

Result
The migration job is deleted.

Related tasks
• Creating a migration job on page 57

Related references
• Troubleshooting a migration job on page 89

Canceling a volume from a migration job

You can delete individual volumes from a migration job, unless migration for the volume is already complete. Deleted volumes can be specified as migration source volumes in another migration job.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree for a source storage system, and select a migration job.
3. On the Volumes tab, select the volumes to delete.
4. From the More Actions menu, choose Cancel Migration Volumes.
5. Verify the displayed information, select the check box to confirm you have reviewed and understand the plan, and then click Submit.
6. Confirm the volume deletions by selecting the migration job again.
Deleting a migration project

You can delete a migration project that has no active tasks. You might want to delete a migration project after the migration is complete or if the migration fails and you want to try again by creating another migration project. This procedure deletes the settings associated with the migration project. It does not delete the individual tasks in the project.

Prerequisites

Verify that there are no tasks that are active for the migration jobs in the migration project.

Procedure

1. On the Mobility tab, select Migration Projects.
2. Expand the tree and select a target storage system.
3. In the Migration Projects list, select a migration project.
4. From the Migration Project Actions menu, select Delete Migration Project.
5. Verify that the plan is correct, and then click Submit.
 The plan is registered as a task.
6. Check the task results in the Tasks & Alerts tab.

Result

The migration project is deleted.

Related concepts

- About the migration project model on page 27

Related tasks

- Creating a migration project on page 54

Related references

- Troubleshooting the creation of a migration project on page 87
Completing the migration

This chapter includes procedures to be followed after our migration is complete. These tasks are not part of the HCS nondisruptive migration workflow, but are functions of Hitachi Command Suite. The procedures for each task are documented in the *Hitachi Command Suite User Guide*.

- Removing the source storage system from Hitachi Command Suite
- Optimizing the target storage configuration
- Reclaiming zero pages for target volumes
Removing the source storage system from Hitachi Command Suite

After a migration project is complete, and you have completed post-migration tasks such as volume shredding and deletion, you can remove (unregister) the source storage system from HCS.

You might want to remove a source storage system from HCS, for example, because the storage system is being decommissioned and physically removed, or it is being redeployed.

Optimizing the target storage configuration

Migration adds host I/O load to the target storage system. You can tune the performance of the target storage system and configure settings that were not automatically migrated.

Performance tuning tasks can include:
- Setting the cache of the target storage system
- Tuning MP blade performance for the newly added host I/O loads
- Adding I/O paths for the host
- Configuring tier profiles for HDT volumes

Configuration setting tasks include:
- Configuring copy pairs and logical groups
- Configuring volume information, such as filter, label, and search values

Reclaiming zero pages for target volumes

You can use Hitachi Command Suite to reclaim zero pages for target volumes that were created using DP pools. You can reclaim zero pages if migration jobs are complete, but the zero page reclaim option was not specified.

Zero page reclaim looks for allocated but unused DP pool pages, and reclaims the empty pages for later allocation to DP volumes that require expansion.
This chapter describes how to troubleshoot the HCS nondisruptive migration workflow.

- **About troubleshooting**
- **How to use this chapter**
- **Troubleshooting the creation of a migration project**
- **Troubleshooting a migration job**
- **Backing out of a migration**
- **Obtaining input for Device Manager CLI commands**
- **Device Manager CLI examples**
- **Relationship between GUI and CLI output items**
About troubleshooting

There are two ways to troubleshoot a migration:

- Address the problem that caused the task to fail and use the HCS nondisruptive migration workflow to resume the migration.
- Back out the migration (return operations to the source storage system), and start the migration from the beginning.

For example, in Figure 8-1 on page 86 the second subtask of Step 1 has failed. You can either repeat Step 1 (by undoing the first subtask and restarting the existing task or executing it anew), or proceed by fixing the second subtask and completing the remaining subtask of Step 1 so that you can continue with Step 2.

Figure 8-1 Example of failed migration task

How to use this chapter

This chapter consists of three main workflows:

- Troubleshooting the creation of a migration project on page 87
- Troubleshooting a migration job on page 89
- Backing out of a migration on page 97

The first two describe how to perform operations for each task (or subtasks) to return to the previous state (before the task was executed) or how to complete the task. As a troubleshooting aid, this guide includes a series of action tables. An action table contains all the tasks and subtasks associated with a step in the migration workflow.
The first column contains the operations necessary to move backward (to the previous state) and the second to move forward (and complete the task). The third column consists of commands you can execute verify that the actions you have taken have been successful.

To troubleshoot a failed migration job, locate the task or subtask that failed in the table. To return to the previous state, perform the operations above the failed task by starting from the row immediately above and working upward. When completing the task, perform the operations immediately below, working downward.

The same action tables are used to a different end in Backing out of a migration on page 97, with a separate workflow that can be used to reverse the entire migration process.

Troubleshooting the creation of a migration project

This topic describes how to recover from a failed task during the creation of a migration project.

1. On the Tasks & Alerts tab, click the link for the failed task to display the Task Details window.
2. Identify the cause of the failure reported by the error message in the Task Information table and take the appropriate action.
3. Check the names of the failed subtasks in the Task Status Detail table.
4. If one or more of the failed subtasks is listed in Completing a failed migration project on page 88, you can complete the failed project by following that procedure. Otherwise, follow the steps in Re-creating the migration project on page 88.
Re-creating the migration project

Follow these steps:

1. If you are migrating a copy pair configuration and the **Save Config Files** subtask was successful, follow the instructions in **Restoring the configuration definition file on page 88** before proceeding.

2. Delete the failed project as described in **Deleting a migration project on page 82**.

3. Create a new project as described in **Creating a migration project on page 54**.

Completing a failed migration project

The subtasks listed in the following table can be completed by changing the options listed in the second column.

<table>
<thead>
<tr>
<th>Subtask name</th>
<th>Option in Editing a migration project on page 76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map resource groups</td>
<td>Edit Resource Group Mapping</td>
</tr>
<tr>
<td>Map storage ports Mappings</td>
<td>Edit Port Mapping</td>
</tr>
<tr>
<td>Specify external paths</td>
<td>Edit External Path Setting</td>
</tr>
</tbody>
</table>

When you are finished, you can open the revised migration project and start over.

Restoring the configuration definition file

Backup copies of your configuration definition files are stored on the pair management server so that you can use them to restart a failed migration project. To restore a configuration definition file, copy the backup file to the appropriate destination.

Note: Copy only the configuration definition file that is associated with the failed task. Do not delete files from the backup folders.

- To obtain the names of the pair management server and the configuration definition file, check the **Task Details** window.

- The backup folder on the pair management server is in the following location:
 - For Windows:

 Device-Manager-agent-installation-folder\agent\config\migration\backup
 - For UNIX:

 Device-Manager-agent-installation-directory/agent/config/migration/backup
• The destination for the copied files differs depending on the Device Manager agent settings:
 ○ The default location of the configuration definition files:
 For Windows: the System folder (indicated by the environment parameter `%windir%`)
 For UNIX: the `/etc` directory
 ○ If the default storage location of the configuration definition file was changed during setup, the location is stored in the `server.agent.rm.horcmSource` property of the Device Manager agent.

Troubleshooting a migration job

This topic describes the measures to take when a task fails during a migration job.

1. On the Tasks & Alerts tab, click the link for the failed task to display the Task Details window.
2. Identify the cause of the failure reported by the error message in the Task Information table and take the appropriate action.
3. On the Mobility tab, select Target Storage Systems.
4. Expand the tree, and then select the migration job corresponding to the failed task.

Figure 8-3 Migration job recovery workflow

Note: After branching to an action table in step 9, be sure and return to step 10 when you are finished.
5. On the **Tasks** tab, click the link for the failed task to display the **Task Details** window.

6. Check the name of the failed subtask in the **Task Status Detail** table. (If the task does not have subtasks, the table does not appear.)

7. On the **Storage Systems** tab, select the storage system and click **Refresh Storage System**.

8. Go to the **Resources** tab and check the status of the volumes associated with the failed subtask. (For example, the task may have failed but the operation to change the volume status may have succeeded anyway.)

9. Take the action(s) described for the failed step and subtask:

 ![Note:](image)

 The action tables include Device Manager CLI commands that are abbreviated for reference and cannot be executed as shown. Click on the **Example** links in the tables for samples of complete commands. In addition, some commands require input that must be gathered from the GUI or other sources. See [Obtaining input for Device Manager CLI commands on page 103](#) for more information.

 - **When a migration job fails at Step 1 (Virtualize and Allocate Volumes) on page 91**
 - **When a migration job fails at Step 2 (Change Host I/O Paths) on page 92**
 - **When a migration job fails at Step 3 (Unallocate Source Volumes) on page 92**
 - **When migrating a copy pair configuration fails on page 93**
 - **When a migration job fails at Step 4 (Nondisruptive Migration) on page 95**
 - **When a migration job fails at Step 5 (Unvirtualize Source Volumes) on page 96**

10. Confirm the status using the commands in the "Check the configuration (CLI)" column of the action tables, or by using the GUI. (For example, when migrating a copy pair configuration, you can check the results on the **Copy Pairs** tab.)

11. Update the status of the failed task as described in [Changing the status of a failed migration job on page 78](#).

 ![Note:](image)

 For a copy pair configuration migration task, you do not need to update the task status.

12. From the **Data Migration Actions** menu, select the appropriate step to execute or repeat.
When a migration job fails at Step 1: Virtualize and Allocate Volumes

This topic describes the action to be taken when a task fails in Step 1 of a migration job.

Table 8-2 Actions for Virtualize and Allocate Volumes

<table>
<thead>
<tr>
<th>Subtask name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add LDEV ID</td>
<td>No action necessary.</td>
<td>N/A — return to previous state.</td>
<td>N/A</td>
</tr>
<tr>
<td>Add Host Group Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set External Paths</td>
<td>Delete the LUN path set for volume virtualization on the source storage system using the <code>DeleteLun</code> command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required parameter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>deletionoption=force</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: DeleteLun on page 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add Virtual ID</td>
<td>Delete the reserved virtual information on the target storage system using the <code>ModifyVLDEV</code> command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required parameter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>vldevoperation=unmapvid</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: ModifyVLDEV on page 119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtualize Source Volumes</td>
<td>Delete the external volume on the target storage system using the <code>DeleteExternalArrayGroup</code> command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: DeleteExternalArrayGroup on page 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocate Target Volumes</td>
<td>No action necessary.</td>
<td>Add the host group to the target storage system port with the <code>AddHostStorageDomain</code> command.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: AddHostStorageDomain on page 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: When data is being migrated from multiple storage systems and the target storage port is shared, specify a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GetStorageArray

`subtarget=LogicalUnit`
`lsubinfo=Path`

Example: [GetStorageArray on page 114](#)

GetStorageArray

`subtarget=VResourcePartitionUnit`
`vrpusubinfo=VLDEV`

Example: [GetStorageArray on page 118](#)

GetStorageArray

`subtarget=ArrayGroup`

Example: [GetStorageArray on page 110](#)

GetStorageArray

`subtarget=Port`
`portsubinfo=HostStorageDomain`

Example: [GetStorageArray on page 117](#)
When a migration job fails at Step 2: Change Host I/O Paths

This topic describes the action to be taken when a task fails in Step 2 of a migration job.

Table 8-3 Actions for Change Host I/O Paths

<table>
<thead>
<tr>
<th>Task name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Host I/O Paths</td>
<td>Check the error message in Task Details on the GUI, and then remove the cause of the error.</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

When a migration job fails at Step 3: Unallocate Source Volumes

This topic describes the action to be taken when a task fails in Step 3 of a migration job.
Table 8-4 Actions for Unallocate Source Volumes

<table>
<thead>
<tr>
<th>Subtask name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete LUN Paths</td>
<td>Set the LUN path for the source storage system from the host using the <code>AddLun</code> command. Example: AddLun on page 105</td>
<td>Delete the LUN path from the host to the source storage system using the <code>DeleteLun</code> command. Required parameter: <code>deletionoption=force</code> Example: DeleteLun on page 108</td>
<td>GetHost <code>hostname=host-name subtarget=LogicalUnit lusubinfo=Path pathsubinfo=HostInfo</code> Example: GetHost on page 109</td>
</tr>
<tr>
<td>Change Cache Mode</td>
<td>Change the cache mode on the target storage system to "cache through" using the <code>ModifyExternalArrayGroup</code> command. Required parameter: <code>cachemode=through</code> Example: ModifyExternalArrayGroup on page 119</td>
<td>Change the cache mode to "write sync" on the target storage system using the <code>ModifyExternalArrayGroup</code> command. Required parameter: <code>cachemode=writesync</code> Example: ModifyExternalArrayGroup on page 119</td>
<td>GetStorageArray <code>subtarget=ArrayGroup</code> Example: GetStorageArray on page 111</td>
</tr>
</tbody>
</table>

When migrating a copy pair configuration fails

This topic describes the action to be taken when a task for migrating a copy pair configuration fails.

You can resume the migration operation in the GUI for each step by returning to the state before the step was executed, or by completing the step:

- **Actions for Prepare Target Secondary Volumes on page 93**
- **Actions for Allocate Secondary Volumes on page 95**
- **Actions for Migrate Config Files on page 95**
- **Actions for ShadowImage Pairs on page 95**

Table 8-5 Actions for Prepare Target Secondary Volumes

<table>
<thead>
<tr>
<th>Subtask name</th>
<th>Return to the previous state</th>
<th>Complete the step</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add LDEV ID</td>
<td>No action necessary.</td>
<td>N/A — return to previous state.</td>
<td>N/A</td>
</tr>
<tr>
<td>Add Host Group Number</td>
<td></td>
<td></td>
<td>GetStorageArray <code>subtarget=VResourcePartitionUnit vrpusubinfo=VLDEV</code></td>
</tr>
<tr>
<td>Add Virtual ID</td>
<td>Delete the virtual information reserved on the target storage system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask name</td>
<td>Return to the previous state</td>
<td>Complete the step</td>
<td>Check the configuration (CLI)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Return to the previous state</td>
<td>using the ModifyVLDEV command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required parameter:</td>
<td></td>
<td>Example: GetStorageArray on page 118</td>
</tr>
<tr>
<td></td>
<td>vldevoperation-unmapvid</td>
<td></td>
<td>GetStorageArray subtarget=LogicalUnit</td>
</tr>
<tr>
<td></td>
<td>Example: ModifyVLDEV on page 119</td>
<td></td>
<td>Example: GetStorageArray on page 117</td>
</tr>
<tr>
<td>Create Target Secondary Volumes</td>
<td>Delete the volume on the target storage system. (If you are using an existing volume as the secondary volume, this is not necessary.)</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>• For a DP volume, use the DeleteVirtualVolume command. Example: DeleteVirtualVolume on page 108</td>
<td></td>
<td>GetStorageArray subtarget=HostStorageDomain</td>
</tr>
<tr>
<td></td>
<td>• For non-DP volumes, use the DeleteLogicalUnit command. Example: DeleteLogicalUnit on page 107</td>
<td></td>
<td>Example: GetStorageArray on page 111</td>
</tr>
<tr>
<td>Update Secondary Volume Relationship Information</td>
<td>No action necessary.</td>
<td></td>
<td>GetStorageArray subtarget=LogicalUnit subinfo=LDEV</td>
</tr>
<tr>
<td></td>
<td>Delete the host group on the target storage system using the DeleteHostStorageDomain command. Example: DeleteHostStorageDomain on page 107</td>
<td></td>
<td>Example: GetStorageArray on page 113</td>
</tr>
<tr>
<td>Add Label of Target Secondary Volume</td>
<td>No action necessary.</td>
<td>Set the label of the target volume using the AddLabel command. Example: Addlabel on page 105</td>
<td></td>
</tr>
</tbody>
</table>
Table 8-6 Actions for Allocate Secondary Volumes

<table>
<thead>
<tr>
<th>Task name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocate Secondary Volumes Step</td>
<td>Troubleshoot the cause according to the error message displayed, then perform the steps for resetting the backup server WWN described in Allocating target secondary volumes on page 69.</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 8-7 Actions for Migrate Config Files

<table>
<thead>
<tr>
<th>Subtask name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migrate Config Files</td>
<td>Check the error message, remove the cause of the failure, and then restart the task.</td>
<td>N/A — return to previous state.</td>
<td>None</td>
</tr>
<tr>
<td>Restart the Instance of CCI to be Migrated</td>
<td>Check the error message</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 8-8 Actions for Create ShadowImage Pairs

<table>
<thead>
<tr>
<th>Task name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create ShadowImage Pairs</td>
<td>Check the error message in Replication Manager, and then remove the cause of the failure.</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

When a migration job fails at Step 4: Nondisruptive Migration

This topic describes the action to be taken when a task fails in Step 4 of a migration job.

Table 8-9 Actions for Nondisruptive Migration

<table>
<thead>
<tr>
<th>Subtask name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Volumes</td>
<td>Delete the volume on the target storage system. (If you are using an existing volume, this is not necessary.)</td>
<td>N/A — restart the failed task.</td>
<td>GetStorageArray subtarget=LogicalUnit Example: GetStorageArray on page 117</td>
</tr>
<tr>
<td></td>
<td>- For a DP volume, use the DeleteVirtualVolume command. Example: DeleteVirtualVolume on page 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- For non-DP volumes, use the DeleteLogicalUnit command. Example: DeleteLogicalUnit on page 107</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When a migration job fails at Step 5: Unvirtualize Source Volumes

This topic describes the action to be taken when a task fails in Step 5 of a migration job.

Table 8-10 Actions for Unvirtualize Source Volumes

<table>
<thead>
<tr>
<th>Subtask name</th>
<th>Return to the previous state</th>
<th>Complete the task</th>
<th>Check the configuration (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unvirtualize Source Volumes</td>
<td>Proceed to the state where the task is completed, because this step is to be performed after data migration is complete.</td>
<td>Delete the external volume on the target storage system using the <code>DeleteExternalArrayGroup</code> command. Example: <code>DeleteExternalArrayGroup on page 107</code></td>
<td><code>GetStorageArray</code> subtarget=ArrayGroup</td>
</tr>
<tr>
<td>Unallocate External Paths</td>
<td>Delete the LUN path set for volume virtualization using the <code>DeleteLun</code> command. Required parameter: <code>deletionoption=force</code> Example: <code>DeleteLun on page 108</code></td>
<td><code>GetStorageArray</code> subtarget=LogicalUnit lusubinfo=Path</td>
<td><code>GetStorageArray</code> on page 115</td>
</tr>
</tbody>
</table>

If you change the status of a task without addressing the underlying problem

If you accidentally change the data migration status by clicking **Waiting for Input (Manually recover)** or **Completed (Manually recover)** in the **Change Failed Task Status** dialog box, the operation cannot be resumed from the GUI. For the affected volume, follow these steps:

1. Delete the volume from the migration job as described in [Canceling a volume from a migration job on page 81](#).
2. Follow the procedures described in [Backing out of a migration on page 97](#).
3. Create a new job (and select the same volume) as described in [Creating a migration job on page 57](#).
4. Start the migration over at [Step 1: Virtualize and allocate volumes on page 62](#).

Migration job fails with KAIC08564-E error message
When migrating configuration definition files, select the files that define both the primary and secondary volumes. Neglecting to do this may cause the Migrate Config Files task to fail with the error KAIC08564-E.

If this error occurs, follow these steps:
1. Create a new migration job that includes the configuration definition files for the missing primary volumes.
2. Execute the following volume migration workflow steps:
 - Step 1: Virtualize and Allocate Volumes
 - Step 2: Change Host I/O Paths
 - Step 3: Unallocate source volumes
3. Execute the following copy pair migration workflow steps:
 - Prepare Target Secondary Volumes
 - Allocate Secondary Volumes
4. Restart the failed Migrate Config Files task.

Backing out of a migration

This topic describes how to back out a migration project so that you can resume from an earlier point, or restart the migration from the beginning.

Determine the last executed task (subtask)

Discover the last task (subtask) to determine where you should begin to back out of the migration.

1. On the Mobility tab, select Migration Projects.
2. Expand the tree, and then select the target migration job.
3. On the Tasks tab, check the name of the most recently executed task.
4. Click the link for the task to display the Task Details window.
5. Find the name of the most recently executed subtask in the Task Status Detail table.
 - If the task does not have subtasks, the Task Status Detail table does not appear.

Check the volumes for which the operation is to be performed

Check the information about the volumes in the job.

1. From the list of volumes displayed by selecting the Volumes tab of the migration job, check the volumes included in the job.
2. Select the Tasks tab of the migration job to display the task list.
3. Click the link for the task to display the Task Details window.
4. Check the volumes for which the most recently executed task (subtask) has been executed and for which it has not been executed.

You can also check the volume information as follows:
1. On the Storage Systems tab, select the storage system and click Refresh Storage System.
2. Go to the Resources tab and check the status of the volumes associated with the failed subtask.

⚠️ Note: Before backing out of a migration, do the following:
- Delete any jobs containing volumes that have completed migration, or delete the volumes from the migration job.
- Refresh the source storage system and target storage system (in that order). On the Storage Systems tab, select the storage system and click Refresh Storage System.

Operations required for backing out

You can use the workflows in this topic to return to a previous state (a partial backout) or return to normal operations on the source storage system (a full backout). Note that these are reverse workflow diagrams; begin at the last step that executed and follow the direction of the arrows (upward).

The workflow tasks (subtasks) are coded as follows:
- Tasks that can be checked by using the GUI
- Tasks required to perform a partial backout (return to a previous state)
- Tasks that can be skipped if you are performing a full backout.

Before starting the migration over, you must complete each of the skipped tasks in the order shown.
Figure 8-4 Workflow for backing out of a data migration
If the migration of a copy pair configuration is still in progress and you need to back out of the migration, you can temporarily skip the steps that restart backup operations (from *Migrate Config Files* to *Prepare Target Secondary Volumes*):

1. Delete the copy pair for the target storage system in the *Create ShadowImage Pairs* step.
2. Go to *Change of cache mode to Through* and follow that step.
3. When all the intervening steps (including *Deletion of the LUN path for the target volume*) are finished, the backout is complete.
4. Perform any tasks you skipped (such as enabling the backup server). If you skip multiple operations, be certain to execute them in the order shown in the workflows.

Backout procedure

This procedure takes you backward through the migration procedure starting at Step 4. You should begin at the step where the migration stopped.

Step 4: Nondisruptive Migration

Return to the state before the **Create Volumes** task by deleting the target volume as described in *When a migration job fails at Step 4: Nondisruptive Migration on page 95*.

Note: If the **Nondisruptive Migration** step has been completed, you cannot back out of the migration (because you cannot switch back to the volumes on the source storage system).

Copy pair configuration migration task

Table 8-11 Actions to back out of copy pair configuration migration

<table>
<thead>
<tr>
<th>Original task</th>
<th>Backout actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Terminate the backup scripts.</td>
</tr>
<tr>
<td>Create ShadowImage Pairs on page 95</td>
<td>Using Replication Manager, delete the copy pairs that were created on the target storage system.</td>
</tr>
</tbody>
</table>
| **Migrate Config Files Step on page 95** | 1. Using CCI, terminate the HORCM instance related to the target storage system.
2. Copy the saved configuration definition file to the initial location. See *Restoring the configuration definition file on page 88*.
3. If necessary, on CCI, start the HORCM instance related to the source storage system. |
| N/A | Use path management software or standard OS tool to take the target secondary volume offline. |
| **Allocate Secondary Volumes Step on page 95** | 1. If the LUN path for the target secondary volume is registered in an existing host group, delete the LUN path using Storage Navigator.
2. If the WWN for the backup server has been added to a newly-created host group, delete the WWN for the backup server from the host group using Storage Navigator.
3. Add the WWN for the backup server to the source storage system using Storage Navigator. |
| N/A | 1. Use path management software or standard OS tool to bring the source secondary volume online.
2. If you stopped any backup scripts, restart them now. |
| **Prepare Target Secondary Volumes Step on page 93** | 1. Check the configuration using the *GetStorageArray* command with these parameters: |
Original task | Backout actions
---|---

<table>
<thead>
<tr>
<th></th>
<th>subtarget=LogicalUnit lusubinfo=LDEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples:</td>
<td>GetStorageArray on page 113</td>
</tr>
<tr>
<td>2.</td>
<td>Delete the label for the target secondary volume using the DeleteLabel command.</td>
</tr>
<tr>
<td>Examples:</td>
<td>DeleteLabel on page 107</td>
</tr>
<tr>
<td>3.</td>
<td>Delete the host group. This returns to the state before Set Paths for Target Secondary Volumes on page 94.</td>
</tr>
<tr>
<td>4.</td>
<td>Delete the target secondary volume. This returns to the state before Create Target Secondary Volumes on page 94.</td>
</tr>
<tr>
<td>5.</td>
<td>Delete the virtual ID. This returns to the state before Add Virtual ID on page 93.</td>
</tr>
</tbody>
</table>

Step 3: Unallocate Source Volumes

1. Change the cache mode to "cache through" (through). This corresponds to the operation to return to the state before Change Cache Mode on page 93.

2. Add the LUN path for the source volume. This corresponds to the operation to return to the state before Delete LUN Paths on page 93.

Step 2: Change Host I/O Paths

Using path management software or standard OS tool, follow these steps:

1. Bring the source volume online.
2. Take the target volume offline.

Step 1: Virtualize and Allocate Volumes

1. Check the configuration using the GetStorageArray command with these parameters:

 subtarget=LogicalUnit lusubinfo=LDEV

 Example: GetStorageArray on page 113

2. Delete the label for the target volume using the DeleteLabel command. Example: DeleteLabel on page 107

3. Delete the LUN path for the target volume. This returns to the state before Allocate Target Volumes on page 91.

4. Unvirtualize the source volume. This return to the states before Virtualize Source Volumes on page 91.
Obtaining input for Device Manager CLI commands

The troubleshooting action tables include Device Manager commands with parameter values that you can obtain from the following sources:

- **Source storage system information (the model name and serial number)**
 On the **Mobility** tab, click **Migration Projects** and expand the tree, and then select a source storage system. Obtain the necessary information from the **Migration Projects** list.

- **Target storage system information (the model name and serial number)**
 On the **Mobility** tab, click **Migration Projects**. Obtain the necessary information from the **Target Storage Systems** list.

- **Virtual resource group ID (vrpuid)**
 Obtain the name of the relevant resource group by using the GUI. Specify the name using the **vrpuname** parameter of the **GetStorageArray** command. The output includes the virtual resource group ID.

- **Other information about volumes**
 Check the information in **Task Details** or on the **Volumes** tab. For details about the data available from CSV files, the GUI, and the CLI, see **Relationship between CLI and GUI output items on page 120**.

Note: For volumes that belong to a migration job, you can run Device Manager CLI commands only when the volumes have a migration status of **Failed** or **Completed**. You can check the **Volumes** tab to see whether a task succeeded or failed for each volume.

Device Manager CLI examples

This topic includes examples for the commands that appear in the troubleshooting action tables. Because the results generated by the commands are lengthy, the output is abridged. Commands that do not return information are marked **No output**.

The following figure depicts the configuration referenced by the example commands.
AddHostStorageDomain

HiCommandCLI AddHostStorageDomain -o "D:\logs\AddHostStorageDomain.log" "model=VSP G1000" "serialnum=10060" "portname=CL3-A" "nickname=huvm-ndm-dc79sf03"

Action

Adds the new host group to the port (CL3-A) of the target storage system (VSP G1000, SN:10060).

Note: If data is migrated from multiple storage systems, when the target storage port is shared, specify a value of 88 in the hostmodeoption parameter. This value can be specified when the host mode is set to HP.

Output

RESPONSE:
An instance of StorageArray

... (Attributes of StorageArray omitted)

List of 1 HostStorageDomain elements:
An instance of HostStorageDomain
objectID=HSDOMAIN.R800.10060.1.4
portID=1
portName=CL3-A
domainID=4
hostMode=Standard
displayName=CL3-A-4
domainType=0
nickname=huvm-ndm-dc79sf03
resourcePartitionUnitID=1
AddLabel

HiCommandCLI AddLabel -o "D:\logs\AddLabel.log" "model=VSP G1000" "serialnum=10060" "devnums=00:A0:01" "label=myLabel"

Action

Adds the label to the target volume (00:A0:01, or 00:B0:01 for the S-VOL) on the target storage system (VSP G1000, SN:10060).

Output

RESPONSE:

An instance of ObjectLabel
 targetID=LDEV.R800.10060.40961
 label=myLabel

AddLun [1]

HiCommandCLI AddLun -o "D:\logs\AddLun.log" "model=USP_V" "serialnum=10037" "portname=CL2-A" "domainnickname=huvm-ndm-dc79sf03" "lun=263" "devnum=00:A0:01"

Action

Adds the LUN path between the volume (00:A0:01) and the host group (portname=CL2-A, domainnickname=huvm-ndm-dc79sf03) on the source storage system (USP_V, SN:10037). Check the target host group in the Task Status Detail window (Information About Source Storage System LUN Paths To Be Deleted).

Output

RESPONSE:

An instance of StorageArray
 . (Attributes of StorageArray omitted)
 . List of 1 Path elements:
 . An instance of Path
 objectID=PATH.R600.10037.128.14.40961
 devNum=40,961
 displayDevNum=00:A0:01
 portID=128
 portName=CL2-A
 domainID=14
 scsiID=15
 LUN=263
 wwnSecurityValidity=true

AddLun [2]

HiCommandCLI AddLun -o "D:\logs\AddLun.log" "model=VSP G1000" "serialnum=10060" "portname=CL3-A" "domainnickname=huvm-ndm-dc79sf03" "lun=263" "devnum=00:A0:01"
Action

Adds the LUN path between the volume (00:A0:01) and the host group (portname=CL3-A, domainnickname=huvm-ndm-dc79sf03) on the target storage system (VSP G1000, SN:10060).

Output

RESPONSE:
An instance of StorageArray
.
.
List of 1 Path elements:
An instance of Path

objectId=PATH.R800.10060.1.4.40961
name=hitachi
devNum=40961
displayDevNum=00:A0:01
portID=1
portName=CL3-A
domainID=4
scsiID=15
LUN=263
wwnSecurityValidity=true

AddWWNForHostStorageDomain

HiCommandCLI AddWWNForHostStorageDomain -o "D:\logs\AddWWNForHostStorageDomain1.log" "serialnum=10060" "model=VSP G1000" "portname=CL3-A" "domainnickname=huvm-ndm-dc79sf03" "wwn=10.00.00.05.1E.8E.CA.42"

Action

Adds the WWN of the host to the added host group (portname=CL3-A, domainnickname=huvm-ndm-dc79sf03).

Output

RESPONSE:
An instance of StorageArray
.
.
List of 1 HostStorageDomain elements:
An instance of HostStorageDomain

objectId=HSDOMAIN.R800.10060.1.4
portID=1
portName=CL3-A
domainID=4
hostMode=Standard
displayName=CL3-A-4
domainType=0
nickname=huvm-ndm-dc79sf03
resourcePartitionUnitID=1

List of 1 WWN elements:
An instance of WWN
WWN=10.00.00.05.1E.8E.CA.42
nickname=

DeleteExternalArrayGroup

HiCommandCLI DeleteExternalArrayGroup -o "D:\logs\DeleteExternalArrayGroup.log" "model=VSP G1000" "serialnum=10060" "arraygroupnames=E20-2"

Action

Deletes the external parity group (E20-2) from the target storage system (VSP G1000, SN: 10060).

No output

DeleteHostStorageDomain

HiCommandCLI DeleteHostStorageDomain -o "D:\logs\DeleteHostStorageDomain.log" "model=VSP G1000" "serialnum=10060" "portname=CL3-C" "domainnickname=HCMD1115"

Action

Deletes the host group (portname=CL3-C, domainnickname=HCMD1115).

No output

DeleteLabel

HiCommandCLI DeleteLabel -o "D:\logs\DeleteLabel.log" "model=VSP G1000" "serialnum=10060" "devnums=00:A0:01"

Action

Deletes the label of the target volume (00:A0:01, or 00:B0:01 for the S-VOL) on the target storage system (VSP G1000, SN: 10060).

No output

DeleteLogicalUnit

HiCommandCLI DeleteLogicalUnit -o "D:\logs\DeleteLogicalUnit.log" "model=VSP G1000" "serialnum=10060" "devnum=00:C0:01"

Action

Deletes the normal volume (00:C0:01, or 00:B0:01 for the S-VOL) on the target storage system (VSP G1000, SN: 10060).

No output
DeleteLun

HiCommandCLI DeleteLun -o "D:\logs\DeleteLun.log" "model=VSP G1000" "serialnum=10060" "portname=CL3-A" "domain=4" "devnum=00:A0:01"

Action

Deletes the LUN path to the volume (00:A0:01) and the host group (portname=CL3-A, domain=4).

No output

DeleteLun (deletionoption=force) [1]

HiCommandCLI DeleteLun -o "D:\logs\DeleteLun.log" "serialnum=10037" "model=USP_V" "portname=CL3-A" "domain=17" "devnum=00:A0:01" "deletionoption=force"

Action

Deletes the LUN path between the host group (portname=CL3-A, domain=17) of the external path and the source volume (00:A0:01).

No output

DeleteLun (deletionoption=force) [2]

HiCommandCLI DeleteLun -o "D:\logs\DeleteLun.log" "model=USP_V" "serialnum=10037" "port=128" "domain=14" "devnum=00:A0:01" "deletionoption=force"

Action

Deletes the LUN path between the source volume (00:A0:01) and the host group (port=128, domain=14).

No output

DeleteVirtualVolume

HiCommandCLI DeleteVirtualVolume -o "D:\logs\DeleteVirtualVolume.log" "model=VSP G1000" "serialnum=10060" "devnums=00:C0:01"

Action

Deletes the DP volume (00:C0:01, or 00:B0:01 for the S-VOL) on the target storage system (VSP G1000, SN:10060).

No output
GetHost

HiCommandCLI GetHost -o "D:\logs\GetHost.log" "hostname=dc79sf03"

Action

Displays the information about the host (dc79sf03).

In the execution results, information about the resource is displayed in hierarchical structure for the Host and WWN instances.

Checks the WWN of the host.

Output

RESPONSE:

An instance of Host
 objectID=HOST.14
 name=dc79sf03

 (Omitted)

 List of 2 WWN elements:
 An instance of WWN
 WWN=10.00.00.05.1E.8E.CA.43
 An instance of WWN
 WWN=10.00.00.05.1E.8E.CA.42

GetHost (subtarget=LogicalUnit)

HiCommandCLI GetHost -o "D:\logs\GetHost_LogicalUnit.log" "hostname=dc79sf03" "model=USP_V" "serialnum=10037" "subtarget=LogicalUnit" "lusubinfo=Path" "pathsubinfo=HostInfo"

Action

Displays information about the paths set from the host (dc79sf03) to a volume on the source storage system (USP_V, SN:10037).

In the execution results, information about the resource is displayed in hierarchical structure for the Host, LogicalUnit, and Path instances.

Checks the Path instance to verify information about the paths set to the source volume.

For example, if you want to delete a volume path, check the information required to identify the path. Also check the domain ID of the host storage domain.

If no path is defined for a volume, information about the volume (information under the LogicalUnit instance) is not displayed.

Output

RESPONSE:

An instance of Host

 (Omitted)
List of 166 Lu elements:

An instance of LogicalUnit
objectID=LU.R600.10037.40961
devNum=40,961
displayName=00:A0:01

List of 2 Path elements:
An instance of Path
objectID=PATH.R600.10037.128.14.40961
devNum=40,961
portID=128
domainID=14
scsiID=15
LUN=263
wwnSecurityValidity=true
An instance of Path
objectID=PATH.R600.10037.1.17.40961
devNum=40,961
portID=1
domainID=17
scsiID=15
LUN=72
wwnSecurityValidity=true

GetStorageArray (subtarget=ArrayGroup) [1]
HiCommandCLI GetStorageArray -o "D:\logs\GetStorageArray_ArrayGroup.log" "model=VSP G1000"
"serialnum=10060" "subtarget=ArrayGroup" "arraygroupname=E20-2"

Action
Checks the parity group (E20-2) on the target storage system (VSP G1000, SN: 10060).
In the execution results, information about the resource is displayed in hierarchical structure for the StorageArray and ArrayGroup instances.
Ensures that the parity group exists by referring to the information about the ArrayGroup instance.

Output
RESPONSE:
An instance of StorageArray

List of 1 ArrayGroup elements:
An instance of ArrayGroup
GetStorageArray (subtarget=ArrayGroup) [2]

HiCommandCLI GetStorageArray -o "D:\logs\GetStorageArray_ArrayGroup.log" "subtarget=ArrayGroup" "model=VSP G1000" "serialnum=10060" "arraygroupname=E20-2"

Action

Displays the parity group (E20-2) on the target storage system (VSP G1000, SN: 10060).

In the execution results, information about the resource is displayed in hierarchical structure for the StorageArray and ArrayGroup instances.

Checks the value of the volumeType attribute under the ArrayGroup instance to verify the cache mode. If the cache mode is Write Sync (write synchronously), 24 is displayed. If it is Through, 40 is displayed.

Output

RESPONSE:
An instance of StorageArray
objectID=ARRAY.R800.10060

List of 1 ArrayGroup elements:
 An instance of ArrayGroup
 objectID=ARRAYGROUP.R800.10060.120.1
 chassis=120
 number=1
 displayName=E20-2

GetStorageArray (subtarget=HostStorageDomain)

HiCommandCLI GetStorageArray -o "D:\logs\GetStorageArray_HostStorageDomain.log" "subtarget=HostStorageDomain" "model=VSP G1000" "serialnum=10060"

Action
Displays the list of host groups on the target storage system (VSP G1000, SN: 10060).

In the execution results, information about the resource is displayed in hierarchical structure for the StorageArray and HostStorageDomain instances.

Checks the information about the host group by referring to the HostStorageDomain instance.

Output
RESPONSE:
An instance of StorageArray
 . (Attributes of StorageArray omitted)
 . List of 144 HostStorageDomain elements:
 . (Omitted)
 . An instance of HostStorageDomain
 objectID=HSDOMAIN.R800.10060.17.21
 portID=17
 portName=CL3-C
 domainID=21
 hostMode=Standard
 displayName=CL3-C-21
 domainType=0
 nickname=HCMD1115
 resourcePartitionUnitID=1

GetStorageArray (subtarget=HostStorageDomain hsdsubinfo=WWN)

HiCommandCLI GetStorageArray -o "D:\logs\GetStorageArray_HostStorageDomain.log"
"subtarget=HostStorageDomain" "model=VSP G1000" "serialnum=10060"
"portname=CL3-A" "domainnickname=huvm-ndm-dc79sf03"
"hsdsubinfo=wwn"

Action
Displays the WWN information of the host group (portname=CL3-A, domainnickname=huvm-ndm-dc79sf03) on the target storage system (VSP G1000, SN: 10060).

In the execution results, information about the resource is displayed in hierarchical structure for the StorageArray, HostStorageDomain, and WWN instances.

Checks both the HostStorageDomain instance and the WWN instance under the HostStorageDomain instance.
If a WWN is not associated with the host group, WWN instances will not be displayed.

Output

RESPONSE:

An instance of StorageArray

.(Attributes of StorageArray omitted)

List of 1 HostStorageDomain elements:

An instance of HostStorageDomain

.objectID=HSDOMAIN.R800.10060.1.4

.portID=1

.portName=CL3-A

.domainID=4

.hostMode=Standard

displayName=CL3-A-4

domainType=0

.nickname=huvm-ndm-dc79sf03

.resourcePartitionUnitID=1

GetStorageArray (subtarget=LogicalUnit lusubinfo=LDEV)

HiCommandCLI GetStorageArray -o "D:\logs
\GetStorageArray_LogicalUnit.log" "subtarget=LogicalUnit"
"model=VSP G1000" "serialnum=10060" "lusubinfo=LDEV"
"displayname=00:A0:01"

Action

Displays the information about the target volume (00:A0:01, or 00:B0:01 for the S-VOL) on the target storage system (VSP G1000, SN: 10060).

In the execution results, information about the resource is displayed in hierarchical structure for the StorageArray, LogicalUnit, LDEV and ObjectLabel instances.

Checks both the LDEV instance and the ObjectLabel instance under the LDEV instance.

If a label is not set for the volume, the ObjectLabel instance will not be displayed.

Output

RESPONSE:

An instance of StorageArray

.(Attributes of StorageArray omitted)

List of 1 Lu elements:

An instance of LogicalUnit

.(Attributes of LogicalUnit omitted)
List of 1 Ldev elements:
An instance of LDEV
 objectID=LDEV.R800.10060.40961
devNum=40,961
displayName=00:A0:01

List of 1 ObjectLabel elements:
An instance of ObjectLabel
targetID=LDEV.R800.10060.40961
label=myLabel

GetStorageArray (subtarget=LogicalUnit lusubinfo=Path) [1]

HiCommandCLI GetStorageArray -o "D:\logs\GetStorageArray_LogicalUnit.log" "subtarget=LogicalUnit"
"model=USP_V" "serialnum=10037" "lusubinfo=Path"
"displayname=00:A0:01"

Action
Displays the path information of the volume (00:A0:01) in the source storage system (USP_V, SN:10037).

In the execution results, information about the resources are displayed in hierarchical structure for the StorageArray, LogicalUnit, and Path instances.

Checks the Path instance to verify the path information set for each volume.

At the Set External Paths stage, there are two paths: host and external. Check the external path in the Task Status Detail window (External Path Information - Source Storage Port). After deleting the LUN path, make sure that the deleted path is no longer displayed.

Output
RESPONSE:
An instance of StorageArray

 (Attributes of StorageArray omitted)

List of 1 Lu elements:
An instance of LogicalUnit
 objectID=LU.R600.10037.40961
devNum=40,961
displayName=00:A0:01

List of 2 Path elements:
An instance of Path
 objectID=PATH.R600.10037.1.17.40961
devNum=40,961
displayDevNum=00:A0:01
GetStorageArray (subtarget=LogicalUnit lusubinfo=Path) [2]

HiCommandCLI GetStorageArray -o "D:\logs\GetStorageArray_LogicalUnit.log" "subtarget=LogicalUnit" "model=USP_V" "serialnum=10037" "lusubinfo=Path" "displayname=00:A0:01"

Action

Displays the path information of the source volume (00:A0:01) on the source storage system (USP_V, SN:10037).

In the execution results, information about the resources are displayed in hierarchical structure for the StorageArray, LogicalUnit, and Path instances.

Checks the Path instance to verify the path information set for each volume.

Output

RESPONSE:
An instance of StorageArray
.
. (Attributes of StorageArray omitted)
.
List of 1 Lu elements:
An instance of LogicalUnit
objectID=LU.R600.10037.40961
devNum=40,961
displayName=00:A0:01
.
. (Omitted)
.
An instance of Path
objectID=PATH.R600.10037.1.17.40961
devNum=40,961
displayDevNum=00:A0:01
portID=1
portName=CL3-A
domainID=17
GetStorageArray (subtarget=LogicalUnit lusubinfo=Path) [3]

HiCommandCLI GetStorageArray -o "D:\logs\GetStorageArray_LogicalUnit.log" "subtarget=LogicalUnit" "model=VSP G1000" "serialnum=10060" "lusubinfo=Path" "displayname=00:A0:01"

Action

Displays the path information of the target volume (00:A0:01) on the target storage system (VSP G1000, SN:10060).

In the execution results, information about the resources are displayed in hierarchical structure for the StorageArray, LogicalUnit, and Path instances.

Checks the Path instance to verify the path information set for each volume.

For example, if you want to delete a volume path, check the information required to identify the path. If no path is defined for the volume, the Path instance is not displayed.

Output

RESPONSE:
An instance of StorageArray
.
. (Attributes of StorageArray omitted)
.
. List of 1 Lu elements:
 An instance of LogicalUnit
 objectID=LU.R800.10060.40961
devNum=40,961
displayName=00:A0:01
.
. (Omitted)
.
. List of 1 Path elements:
 An instance of Path
 objectID=PATH.R800.10060.1.4.40961
devNum=40,961
displayDevNum=00:A0:01
 portID=1
 portName=CL3-A
domainID=4
 scsiID=15
 LUN=263
 wwnSecurityValidity=true
GetStorageArray (subtarget=LogicalUnit lusubinfo=Path) [4]

HiCommandCLI GetStorageArray -o "D:\logs \GetStorageArray_LogicalUnit.log" "subtarget=LogicalUnit" "model=VSP G1000" "serialnum=10060" "lusubinfo=Path" "displayname=00:C0:01"

Action

Displays the information about the logical unit (00:C0:01, or 00:B0:01 for the S-VOL) on the target storage system (VSP G1000, SN: 10060).

In the execution results, information about the resources are displayed in hierarchical structure for the StorageArray and LogicalUnit instances.

Checks the LogicalUnit instance to verify the volume information.

Output

RESPONSE:
An instance of StorageArray

. (Attributes of StorageArray omitted)

. List of 1 Lu elements:
 . An instance of LogicalUnit
 . objectID=LU.R800.10060.49153
 . devNum=49,153
 . displayName=00:C0:01

. (Omitted)

GetStorageArray (subtarget=Port portsubinfo=HostStorageDomain)

HiCommandCLI GetStorageArray -o "D:\logs \GetStorageArray_Port.log" "subtarget=Port" "model=VSP G1000" "serialnum=10060" "portname=CL3-A" "portsubinfo=HostStorageDomain"

Action

Displays the list of host groups of the target port (CL3-A) on the target storage system (VSP G1000, SN: 10060).

In the execution results, information about the resources are displayed in hierarchical structure for the StorageArray, Port and HostStorageDomain instances.

Checks the information about both the Port instance and HostStorageDomain instance under the Port instance.

Output

RESPONSE:
An instance of StorageArray
GetStorageArray (subtarget=VResourcePartitionUnit vrpusubinfo=VLDEV)

HiCommandCLI GetStorageArray -o "D:\logs \GetStorageArray_VResourcePartitionUnit.log" "subtarget=VResourcePartitionUnit" "vrpusubinfo=VLDEV" "vmodel=USP_V" "vserialnum=10037" "vdevnum=00:A0:01"

Action

Displays the VResourcePartitionUnit and VLDEV (00:A0:01, or 00:B0:01 for the S-VOL) of the virtual storage machine (vmodel=USP_V, vserialnum=10037) on the target storage system (VSP G1000, SN: 10060).

In the execution results, information about the resources are displayed in hierarchical structure for the StorageArray, VResourcePartitionUnit and VLDEV instances.

Ensures that the virtual information is set to the volume by referring to the VLDEV instance.

Output

RESPONSE:
An instance of StorageArray

List of 1 Port elements:
An instance of Port
 objectID=PORT.R800.10060.1
 portID=1

List of 13 HostStorageDomain elements:

List of 6 VResourcePartitionUnit elements:
 An instance of VResourcePartitionUnit

List of 1 VLDEV elements:
 An instance of VLDEV
 objectID=VLDEV.R800.10060.1.40961
 resourcePartitionUnitID=1
 devNum=40,961
ModifyExternalArrayGroup

HiCommandCLI ModifyExternalArrayGroup -o "D:\logs\ModifyExternalArrayGroup.log" "model=VSP G1000" "serialnum=10060" "arraygroupname=E20-2" "cachemode=xxx"

Action

Changes the cache mode of the parity group (E20-2) on the target storage system (VSP G1000, SN: 10060). Specify `writesync` or `through` for the `cachemode` parameter.

In the execution results, for the `volumeType` attribute of the ArrayGroup instance, if the cache mode is Write Sync (write synchronously), 24 is displayed. If it is Through, 40 is displayed.

Output

RESPONSE:
An instance of StorageArray
.
. (Attributes of StorageArray omitted)
.
List of 1 ArrayGroup elements:
 An instance of ArrayGroup
.
. (Omitted)
.
 displayName=E20-2
.
. (Omitted)
.
 volumeType=nn
.
. (Omitted)
.
ModifyVLDEV (vldevoperation=unmapvid)

HiCommandCLI ModifyVLDEV -o "D:\logs\ModifyVLDEV.log" "vldevoperation=unmapvid" "model=VSP G1000" "serialnum=10060" "vrpuid=1" "devnum=00:A0:01"

Action
Deletes the virtual information of the target volume (00:A0:01, or 00:B0:01 for the S-VOL) in the VResourcePartitionUnit (id=1) on the target storage system (VSP G1000, SN:10060).

Output
RESPONSE:
An instance of StorageArray
 . (Attributes of StorageArray omitted)
 .
 List of 1 VResourcePartitionUnit elements:
 An instance of VResourcePartitionUnit
 .
 List of 1 VLDEV elements:
 An instance of VLDEV
 objectID=VLDEV.R800.10060.1.40961
 resourcePartitionUnitID=1
 devNum=40,961
 vArrayType=R600
 vArrayFamily=R600
 vSerialNumber=10037
 vDevNum=-1
 vEmulation=
 vSSID=-1
 vLUSE=-1
 vCVS=-1
 operationMode=0
 hasSubstance=0

Relationship between GUI and CLI output items

The following table shows the correspondence of items displayed on the Volumes tab, in CSV outputs, and in CLI attributes. Use this table to obtain the necessary information for command line attributes. For details about the CLI output items, see the Hitachi Command Suite CLI Reference Guide.

<table>
<thead>
<tr>
<th>GUI display item</th>
<th>CSV output item</th>
<th>CLI attribute instance(attribute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Volume</td>
<td>LogicalUnit(devNum)</td>
</tr>
<tr>
<td>Volume</td>
<td>Label</td>
<td>ObjectLabel(label)</td>
</tr>
<tr>
<td>Capacity</td>
<td>Capacity</td>
<td>LogicalUnit(capacityInKB)</td>
</tr>
<tr>
<td>Block size</td>
<td>Block Size</td>
<td>LogicalUnit(numberOfLBAs)</td>
</tr>
<tr>
<td>Host</td>
<td>Host</td>
<td>Host(name)</td>
</tr>
<tr>
<td>Port</td>
<td>Port</td>
<td>Port(displayName)</td>
</tr>
<tr>
<td>Parity Group</td>
<td>Parity Group</td>
<td>ArrayGroup(displayName)</td>
</tr>
<tr>
<td>Pool</td>
<td>Pool</td>
<td>Pool(poolID)</td>
</tr>
<tr>
<td>GUI display item</td>
<td>CSV output item</td>
<td>CLI attribute instance(attribute)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Pool Name</td>
<td>Pool Name</td>
<td>Pool(name)</td>
</tr>
<tr>
<td>Resource Group</td>
<td>Resource Group</td>
<td>VResourcePartitionUnit(name)</td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Volume</td>
<td>LogicalUnit(V)</td>
</tr>
<tr>
<td>Label</td>
<td>Label</td>
<td>ObjectLabel(V)</td>
</tr>
<tr>
<td>Host</td>
<td>Host</td>
<td>Host(name)</td>
</tr>
<tr>
<td>Port</td>
<td>Port</td>
<td>Port(displayName)</td>
</tr>
<tr>
<td>Resource Group</td>
<td>Resource Group</td>
<td>VResourcePartitionUnit(name)</td>
</tr>
<tr>
<td>Virtual Storage Machine</td>
<td>Virtual Storage Machine</td>
<td>VStorageArray(name)</td>
</tr>
<tr>
<td>Virtual Model</td>
<td>Virtual Model</td>
<td>VStorageArray(vArrayType)</td>
</tr>
<tr>
<td>Virtual Serial No.</td>
<td>Virtual Serial No.</td>
<td>VStorageArray(vSerialNumber)</td>
</tr>
<tr>
<td>Virtual LDEV ID</td>
<td>Virtual LDEV ID</td>
<td>VLDEV(vDevNum)</td>
</tr>
<tr>
<td>Migration Target Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Volume</td>
<td>LogicalUnit(devNum)</td>
</tr>
<tr>
<td>Label</td>
<td>Label</td>
<td>ObjectLabel(label)</td>
</tr>
<tr>
<td>Data Migration Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td>Step 1</td>
<td>N/A</td>
</tr>
<tr>
<td>Step 2</td>
<td>Step 2</td>
<td>N/A</td>
</tr>
<tr>
<td>Step 3</td>
<td>Step 3</td>
<td>N/A</td>
</tr>
<tr>
<td>Step 4</td>
<td>Step 4</td>
<td>N/A</td>
</tr>
<tr>
<td>Step 5</td>
<td>Step 5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Capacity values might be reported in different units depending on the source.
A

alternate path

A secondary path (for example, port, target ID, or LUN) to a logical volume, in addition to the primary path, that is used as a backup in case the primary path fails.

C

cache logical partition (CLPR)

Virtual cache memory that is set up to be allocated to hosts that are in contention for cache memory. CLPRs can be used to segment storage system cache that is assigned to parity groups.

CLPR

See cache logical partition.

command device

A dedicated logical volume used to interface with the storage system. Can be shared by several hosts.

configuration definition file

A text file that defines the configuration, parameters, and options of Command Control Interface (CCI) operations. It also defines the connected hosts and the volumes and groups known to the CCI instance.

CSV

comma-separated values
D

DP-VOL

Dynamic Provisioning virtual volume. A virtual volume that has no memory space that is used by Dynamic Provisioning.

dynamic provisioning (DP)

Presents a virtual pool of shared capacity that is larger than the actual amount of physical storage available. Storage capacity can be allocated to an application without it actually being physically mapped until it is needed, so storage allocations can exceed the amount of storage that is physically installed.

For example, system administrators can deliver capacity on demand by provisioning storage from a virtual pool. This not only reduces administration costs by cutting the time to provision new storage, but also improves application availability by reducing the downtime needed for storage provisioning.

E

external path

A path from a storage port of a storage system to a volume on a connected external storage system.

external volume

A logical volume whose data resides on drives that are physically located in an externally connected storage system.

F

FCoE

Fibre Channel over Ethernet. An encapsulation of Fibre Channel frames over Ethernet networks. This allows Fibre Channel to use 10-gigabit Ethernet networks (or higher speeds) while preserving the Fibre Channel protocol.

H

HBA

See host bus adapter.
HDP

See Hitachi Dynamic Provisioning.

HDT

See Hitachi Dynamic Tiering.

Hitachi Dynamic Provisioning (HDP)

Functionality that allocates virtual volumes to a host and uses the physical capacity that is necessary according to the data write request.

Hitachi Dynamic Tiering (HDT)

Functionality that is used with Hitachi Dynamic Provisioning that places data in a hardware tier according to the I/O load. For example, a data area that has a high I/O load is placed in a high-speed hardware tier, and a data area that has a low I/O load is placed in a low-speed hardware tier.

host bus adapter (HBA)

One or more dedicated adapter cards that are installed in a host, have unique WWN addresses, and provide Fibre Channel I/O connectivity to storage systems, typically through Fibre Channel switches. Unlike general-purpose Ethernet adapters, which handle a multitude of network protocols, host bus adapters are dedicated to high-speed block transfers for optimized I/O performance.

host group

Custom grouping of hosts that segregates hosts in a meaningful way, for example, a group of hosts that is segregated by operating system. A host group can be shared with another virtual port or another physical port for alternate path support.

I

internal volume

A logical volume whose data resides on drives that are physically located within the storage system.

L

LDEV

See logical device.
logical device (LDEV)

An individual logical device (on multiple drives in a RAID configuration) in the storage system. An LDEV may or may not contain any data and may or may not be defined to any hosts. Each LDEV has a unique identifier, or address, within the storage system. The identifier is composed of the LDKC number, CU number, and LDEV number.

An LDEV formatted for use by mainframe hosts is called a logical volume image (LVI). An LDEV formatted for use by open-system hosts is called a logical unit (LU).

logical unit (LU)

A volume, or LDEV, created in an open storage system, or configured for use by an open-systems host, for example, OPEN-V.

logical unit number (LUN)

A unique management number that identifies a logical unit (LU) in a storage system. A logical unit can be an end user, a file, a disk drive, a port, a host group that is assigned to a port, an application, or virtual partitions (or volumes) of a RAID set.

Logical unit numbers (LUNs) are used in SCSI protocols to differentiate disk drives in a common SCSI target device, such as a storage system. An open-systems host uses a LUN to access a particular LU.

LU

See logical unit.

LUN

See logical unit number.

M

management client

A computer used to operate a graphical user interface client or a command-line interface client.

O

OPEN-V

A logical unit (LU) of user-defined size for use by open-systems hosts.
pair status

Indicates the condition of a copy pair. A pair must have a specific status for specific operations. When a pair operation completes, the status of the pair changes to a different status determined by the type of operation.

parity group

A redundant array of independent drives (RAID) that have the same capacity and are treated as one group for data storage and recovery. A parity group contains both user data and parity information, which allows the user data to be accessed in the event that one or more of the drives within the parity group are not available. The RAID level of a parity group determines the number of data drives and parity drives and how the data is “striped” across the drives.

pool volume (pool-VOL)

A logical volume that is reserved for storing Copy-on-Write Snapshot data or Dynamic Provisioning write data.

primary volume (P-VOL)

In a volume pair, the source volume that is copied to another volume using the volume replication functionality of a storage system. The data on the P-VOL is duplicated synchronously or asynchronously on the secondary volume (S-VOL).

properties file

A file that defines aspects of the operating environment. The operating environment can be modified by changing the appropriate properties file.

PVOL (primary volume)

The source volume that is copied to another volume using the volume replication functionality of a storage system.

resource group

A collection of resources that are grouped by one or more system resource types.
S

S-VOL

See secondary volume.

secondary volume (S-VOL)

After a backup, the volume in a copy pair that is the copy of the original data on the primary volume (P-VOL). Recurring differential data updates keep the data in the S-VOL consistent with the data in the P-VOL.

shredding

Erasing the data on a volume by overwriting it with dummy data multiple times so that the original data cannot be restored.

T

tier

A user-friendly descriptor that summarizes the type of storage hardware on which a logical volume resides. Typical storage hardware characteristics that are referred to by a tier are: disk speed, disk capacity, disk type (for example, FC, SCSI), RAID level, storage system model, virtualization level (for example, internal vs. external), and pool type (if relevant). All volumes that share the characteristics summarized by the tier are annotated with that tier's name.

tiered storage

A layered structure of performance levels, or tiers, that matches data access requirements with the appropriate performance tiers.

U

unallocated volume

A volume (LDEV) for which no host paths are assigned.

user group

A collection of users who have access to the same resources and have the same permissions for those resources. Permissions for users are determined by the user groups to which they belong. Users and resource groups can be assigned to multiple user groups.
V

V-VOL

See virtual volume.

virtual storage machine

A virtual storage system that you create on VSP G1000 systems that allows multiple resource groups to be treated as a single device.

VSP

Hitachi Virtual Storage Platform

W

web client

An application that is used on a client machine to access a server on which management software is installed. A web client contains two parts: dynamic web pages and the web browser.

WWN

World wide name. A unique identifier for an open systems host. It is typically a node name that is a 64-bit address assigned to HBAs (host bus adapters) or storage system ports that define the endpoints of a Fibre Channel connection between storage and hosts for purposes of volume input/output.

WWN is essential for defining the SANtinel™ parameters because it determines whether the open systems host is to be allowed or denied access to a specified logical unit or a group of logical units.

Z

zero data

The number 0 (zero). A zero-formatting operation writes the number 0 (zero) to the entire disk area, overwriting the previous data, thereby safely and permanently destroying any previous data and removing it from the drive.
Index

B
 backout procedure 101

C
 cascade 34
 CLI attributes 120
 command examples 103
 copy pair
 operation restrictions 34

D
 Device Manager CLI 103

H
 HORCM file format 33

K
 KAIC08564-E error message 96

M
 migration
 about projects and jobs 48
 allocating target S-VOLs 69
 backing out 97
 changing host I/O paths 63
 changing job descriptions 79
 changing job names 79
 changing status of failed jobs 78
 copy pair requirements 33
 creating a project 54
 creating copy pairs 70
 creating jobs 57
 deleting a job 81
 deleting job volumes 81
 deleting projects 82
 editing projects 76
 explained 15
 job status 75
 job, about 27
 migrating config files 70
 migrating volume data 65
 optimizing target storage 84
 overview 19
 performance 45
 planning 44
 preparing storage resources 53
 preparing target S-VOLs 68
 project status 74
 project, about 27
 removing source storage 84
 unallocate source volumes 64
 unvirtualize source volumes 67
 user interface overview 48
 virtualizing source volumes 62
 zero page reclaim 84

migration job
 troubleshooting 89

migration project
 troubleshooting 87

multi-target 34

N
 nondisruptive migration
 about 14
 choosing a solution 14

O
 overview, migration 19

P
 pools
 creating 58

R
 requirements 30
 restrictions 31
S
 ShadowImage pairs 33, 34

T
 troubleshooting
 about 86
 migration job 89
 migration project 87
 workflow 86

V
 virtual storage machines
 editing 79
 volumes
 external 40
 TrueCopy 36
 Universal Replicator 38