Contents

Preface... 13
Intended audience... 14
Product version... 14
Release notes... 14
Document revision level... 14
Related documents... 15
Document conventions.. 15
Conventions for storage capacity values... 16
Accessing product documentation... 17
Getting help.. 17
Comments.. 17

1 Overview of Hitachi Command Suite.. 19
 About Hitachi Command Suite.. 20
 Features.. 21
 What’s new.. 22
 System configuration.. 23
 Process flow... 26
 Navigating the interface.. 27
 Navigating help... 29

2 Setting up Hitachi Command Suite.. 31
 Configuring Hitachi Command Suite... 32
 Configuring your browser and Java for Hitachi Command Suite.. 32
 About configuring browser settings.. 32
 Checking management server name resolution... 33
 Disabling pop-up blocking for Internet Explorer.. 34
 Setting security options for using Internet Explorer.. 35
 Setting security options for Firefox... 36
 Setting the Java™ Web Start (versions 6.0 and 7.0) proxy to link with other products........ 37
 Configuring JRE versions from JWS version 6.0... 38
Clearing the cache (JWS v6.0) when upgrading Hitachi Command Suite

Logging in to Hitachi Command Suite

Logging in when HCS is not available

Setting up security

About configuring security options

Setting a password policy

Setting automatic account locking

Setting a warning banner message

Downloading components

About downloading components

Downloading agents, CLI, and Host Data Collector files

Managing HCS licenses

About HCS license management

Registering an HCS license

Checking HCS license information

Managing Storage Navigator licenses

About license key types

Installing a software application

Enabling a license

Disabling a license

Removing a software application

Updating license status

Viewing license information

License information on the License Keys window

3 Discovering, registering, and adding management targets

Setting up storage resources

Registering storage systems

About registering and removing a storage system

Prerequisites for registering a storage system

Registering a storage system

Changing storage system information

About acquiring the most recent storage system information

Acquiring the most recent storage system information

Operations available to SMI-S enabled storage systems

Registering hosts

About registering a host

Methods for registering hosts

Priority for acquiring the WWN or iSCSI name

Registering hosts by using Host Data Collector

Registering hosts manually by specifying the WWN or iSCSI name

Registering hosts using host scan

Registering hosts using merge hosts

About changing host settings and information

Workflow for detecting hosts

Updating host information registered by using Host Data Collector

Changing settings for a manually registered host

Changing settings for a host registered by using Device Manager agent

About removing hosts and releasing associated resources

Removing hosts and releasing associated resources

Registering file servers
Creating HDI file systems (HFSM v3.1) ... 258
Changing HNAS F or HDI file system settings (HFSM v3.1 or later) 259
Deleting HNAS F or HDI file systems .. 260
File share configuration examples .. 260

6 Managing virtual storage machines ... 263
About virtual storage machines ... 264
Prerequisites for allocating resources to virtual storage machines 268
Creating virtual storage machines .. 269
Allocating volumes to hosts by using virtual storage machine resources 270
Editing virtual storage machines .. 271
Deleting virtual storage machines .. 273

7 Replicating volumes for continuous access ... 275
About global-active device .. 276
Setting up a global-active device environment ... 282
About global-active device setup .. 282
Prerequisites for global-active device setup ... 284
Select primary and secondary storage systems .. 285
Configuring remote paths .. 286
Configuring the quorum disk .. 287
Configuring pair management servers ... 289
Configuring the virtual storage machine .. 290
Monitoring and managing global-active device pairs 291
Allocating global-active device pairs .. 291
Allocating global-active device pairs using existing volumes 293
Adding redundancy to open-allocated volumes .. 295
Checking global-active device pair status .. 297
Protecting global-active device pairs ... 298
Monitoring global-active device pair performance .. 299
Unallocating global-active device pairs .. 301
Unallocating individual global-active device volumes 302
Recovering from global-active device failures ... 303
About global-active device failures .. 303
Recovering from HBA-related host path failures .. 304
Discontinuing a global-active device environment .. 305
Volume replication .. 306
About replicating volumes (pair management) .. 307
Copy pair management operations ... 308
Adding command devices .. 308
Editing command devices ... 309
Defining copy pairs ... 309
Changing the status of a copy pair .. 310
Deleting command devices .. 311

8 Optimizing storage performance ... 313
About optimizing storage .. 314
About optimizing HBA configurations ... 315
Adding an HBA ... 316
Searching HCS resources .. 369
 About searching HCS resources .. 369
 Keyword search .. 370
 Criteria search .. 371
 Criteria search dialog box .. 372
Generating resource reports .. 375
 About generating reports ... 375
 Exporting host information to a CSV file ... 375
 Exporting file server information to a CSV file .. 376
 Exporting logical group information to a CSV file .. 377
 Exporting search results to a CSV file .. 377
 Exporting access control information for resources to a CSV file ... 378
Using reports to verify system changes .. 378
 Viewing a Device Manager - Storage Navigator report ... 378
 Downloading and viewing a system configuration report .. 379
 Viewing a report in the Reports window ... 379
 Creating a configuration report .. 380
 Deleting a configuration report .. 380

11 Managing tasks .. 381
 About tasks ... 382
 Customizing which tasks display in the global monitoring bar ... 385
 Viewing HCS task status ... 385
 Rescheduling HCS tasks waiting to be executed .. 386
 Stopping running data migration or data placement profile tasks ... 386
 Canceling scheduled HCS tasks ... 387
 Moving HCS tasks to the HCS Task History tab .. 387
 Restarting a failed or stopped HCS task ... 388
 Deleting HCS tasks ... 389
 Viewing system task status ... 389
 Managing system tasks .. 390
 Troubleshooting system tasks ... 391
 Viewing data collection task status ... 392
 Restarting a data collection task .. 393

12 Monitoring managed resources and resolving alerts .. 395
 Monitoring storage resources ... 396
 Viewing information summaries .. 397
 About checking system status in the dashboard .. 397
 Accessing the dashboard .. 399
 Customizing the dashboard .. 400
 About the Storage Systems tree .. 401
 Viewing current storage system information ... 401
 Viewing MP Blade information ... 401
 About the Hosts tree .. 402
 Viewing current host information .. 402
 About the file server view .. 403
 Monitoring file servers ... 403
 Analyzing storage system performance .. 403
 About analyzing storage system performance .. 403
This manual provides information for Hitachi Command Suite (HCS).

- Intended audience
- Product version
- Release notes
- Document revision level
- Related documents
- Document conventions
- Conventions for storage capacity values
- Accessing product documentation
- Getting help
- Comments
Intended audience

This document provides instructions for storage administrators.

Product version

This document revision applies to HCS version 8.1 or later.

Release notes

Read the release notes before installing and using this product. They may contain requirements or restrictions that are not fully described in this document or updates or corrections to this document.

Document revision level

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK-90HC172-00</td>
<td>October 2010</td>
<td>Initial release.</td>
</tr>
<tr>
<td>MK-90HC172-01</td>
<td>October 2010</td>
<td>Revision 1, supersedes and replaces MK-90HC172-00</td>
</tr>
<tr>
<td>MK-90HC172-02</td>
<td>January 2011</td>
<td>Revision 2, supersedes and replaces revision 1</td>
</tr>
<tr>
<td>MK-90HC172-03</td>
<td>April 2011</td>
<td>Revision 3, supersedes and replaces revision 2</td>
</tr>
<tr>
<td>MK-90HC172-04</td>
<td>August 2011</td>
<td>Revision 4, supersedes and replaces revision 3</td>
</tr>
<tr>
<td>MK-90HC172-05</td>
<td>November 2011</td>
<td>Revision 5, supersedes and replaces revision 4</td>
</tr>
<tr>
<td>MK-90HC172-06</td>
<td>March 2012</td>
<td>Revision 6, supersedes and replaces revision 5</td>
</tr>
<tr>
<td>MK-90HC172-07</td>
<td>July 2012</td>
<td>Revision 7, supersedes and replaces revision 6</td>
</tr>
<tr>
<td>MK-90HC172-08</td>
<td>August 2012</td>
<td>Revision 8, supersedes and replaces revision 7</td>
</tr>
<tr>
<td>MK-90HC172-09</td>
<td>November 2012</td>
<td>Revision 9, supersedes and replaces revision 8</td>
</tr>
<tr>
<td>MK-90HC172-10</td>
<td>February 2013</td>
<td>Revision 10, supersedes and replaces revision 9</td>
</tr>
<tr>
<td>MK-90HC172-11</td>
<td>May 2013</td>
<td>Revision 11, supersedes and replaces revision 10</td>
</tr>
<tr>
<td>MK-90HC172-12</td>
<td>October 2013</td>
<td>Revision 12, supersedes and replaces revision 11</td>
</tr>
<tr>
<td>MK-90HC172-13</td>
<td>January 2014</td>
<td>Revision 13, supersedes and replaces revision 12</td>
</tr>
<tr>
<td>MK-90HC172-14</td>
<td>April 2014</td>
<td>Revision 14, supersedes and replaces revision 13</td>
</tr>
<tr>
<td>MK-90HC172-15</td>
<td>August 2014</td>
<td>Revision 15, supersedes and replaces revision 14</td>
</tr>
<tr>
<td>MK-90HC172-16</td>
<td>October 2014</td>
<td>Revision 16, supersedes and replaces revision 15</td>
</tr>
</tbody>
</table>
Related documents

The Hitachi documents below are referenced in this document or contain more information about the features described in this document. They can be found on the applicable Hitachi documentation CD.

- *Hitachi Command Suite Administrator Guide*, MK-90HC175
- *Hitachi Command Suite Tiered Storage Manager CLI Reference Guide*, MK-90HC177
- *Hitachi Command Suite Messages*, MK-90HC178
- *Hitachi Command Suite Mainframe Agent Installation and Configuration Guide*, MK-96HC130
- *Hitachi Command Suite System Requirements*, MK-92HC209

Document conventions

This document uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold</td>
<td>Indicates text on a window, other than the window title, including menus, menu options, buttons, fields, and labels. Example: Click OK.</td>
</tr>
</tbody>
</table>
| *Italic* | Indicates a variable, which is a placeholder for actual text provided by the user or system. Example: *copy source-file target-file*
| **Note:** | Angled brackets (< >) are also used to indicate variables. | | |
| **Monospace** | Indicates text that is displayed on screen or entered by the user. Example: `pairdisplay -g oradb` |
| < > angled brackets | Indicates a variable, which is a placeholder for actual text provided by the user or system. Example: `pairdisplay -g <group>` |
| **Note:** | Italic font is also used to indicate variables. |
| [] square brackets | Indicates optional values. Example: `[a | b]` indicates that you can choose a, b, or nothing. |
| { } braces | Indicates required or expected values. Example: `{ a | b }` indicates that you must choose either a or b. |
| | vertical bar | Indicates that you have a choice between two or more options or arguments. Examples: `[a | b]` indicates that you can choose a, b, or nothing. |
This document uses the following icons to draw attention to information:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Note]</td>
<td>Note</td>
<td>Calls attention to important or additional information.</td>
</tr>
<tr>
<td>![Tip]</td>
<td>Tip</td>
<td>Provides helpful information, guidelines, or suggestions for performing tasks more effectively.</td>
</tr>
<tr>
<td>![Caution]</td>
<td>Caution</td>
<td>Warns the user of adverse conditions or consequences (for example, disruptive operations).</td>
</tr>
<tr>
<td>![WARNING]</td>
<td>WARNING</td>
<td>Warns the user of severe conditions or consequences (for example, destructive operations).</td>
</tr>
</tbody>
</table>

Conventions for storage capacity values

Physical storage capacity values (for example, disk drive capacity) are calculated based on the following values:

<table>
<thead>
<tr>
<th>Physical capacity unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kilobyte (KB)</td>
<td>1,000 (10^3) bytes</td>
</tr>
<tr>
<td>1 megabyte (MB)</td>
<td>1,000 KB or 1,000^2 bytes</td>
</tr>
<tr>
<td>1 gigabyte (GB)</td>
<td>1,000 MB or 1,000^3 bytes</td>
</tr>
<tr>
<td>1 terabyte (TB)</td>
<td>1,000 GB or 1,000^4 bytes</td>
</tr>
<tr>
<td>1 petabyte (PB)</td>
<td>1,000 TB or 1,000^5 bytes</td>
</tr>
<tr>
<td>1 exabyte (EB)</td>
<td>1,000 PB or 1,000^6 bytes</td>
</tr>
</tbody>
</table>

Logical storage capacity values (for example, logical device capacity) are calculated based on the following values:

<table>
<thead>
<tr>
<th>Logical capacity unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 block</td>
<td>512 bytes</td>
</tr>
<tr>
<td>1 KB</td>
<td>1,024 (2^10) bytes</td>
</tr>
<tr>
<td>1 MB</td>
<td>1,024 KB or 1,024^2 bytes</td>
</tr>
<tr>
<td>1 GB</td>
<td>1,024 MB or 1,024^3 bytes</td>
</tr>
<tr>
<td>1 TB</td>
<td>1,024 GB or 1,024^4 bytes</td>
</tr>
<tr>
<td>1 PB</td>
<td>1,024 TB or 1,024^5 bytes</td>
</tr>
<tr>
<td>Logical capacity unit</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1 EB</td>
<td>1,024 PB or 1,024^6 bytes</td>
</tr>
</tbody>
</table>

Accessing product documentation

Product user documentation is available on the Hitachi Data Systems Portal: https://portal.hds.com. Check this site for the most current documentation, including important updates that may have been made after the release of the product.

Getting help

[Hitachi Data Systems Support Portal](https://portal.hds.com) is the destination for technical support of your current or previously-sold storage systems, midrange and enterprise servers, and combined solution offerings. The Hitachi Data Systems customer support staff is available 24 hours a day, seven days a week. If you need technical support, log on to the Hitachi Data Systems Support Portal for contact information: https://portal.hds.com

[Hitachi Data Systems Community](https://community.hds.com) is a new global online community for HDS customers, partners, independent software vendors, employees, and prospects. It is an open discussion among these groups about the HDS portfolio of products and services. It is the destination to get answers, discover insights, and make connections. The HDS Community complements our existing Support Portal and support services by providing an area where you can get answers to non-critical issues and questions. **Join the conversation today!** Go to community.hds.com, register, and complete your profile.

Comments

Please send us your comments on this document to doc.comments@hds.com. Include the document title and number, including the revision level (for example, -07), and refer to specific sections and paragraphs whenever possible. All comments become the property of Hitachi Data Systems Corporation.

Thank you!
Overview of Hitachi Command Suite

Hitachi Command Suite (HCS) is a comprehensive software suite providing management services for storage systems and hosts. Storage configuration, virtualization, reporting, and monitoring tools are fully supported.

- About Hitachi Command Suite
- Features
- What's new
- System configuration
- Process flow
- Navigating the interface
- Navigating help
About Hitachi Command Suite

Hitachi Command Suite consists of a number of storage management software products used for managing storage resources in large-scale, complex SAN environments.

HCS includes:

- **Hitachi Device Manager**: Supports registration of physical resources to be managed, including storage systems, file-servers, hosts, and related tasks such as volume allocation and grouping of resources for easier management and access.

- **Hitachi Tiered Storage Manager**: Supports storage tiers of differing performance characteristics so that volume data storage costs and performance can be optimized.

- **Hitachi Replication Manager**: Supports volume data replication for backup and disaster recovery.

- **Hitachi Tuning Manager**: Supports optimizing the performance of storage resources.

- **Hitachi Compute Systems Manager**: Supports centralized monitoring and management of hosts, including rebooting and power management.

- **Hitachi Command Director**: Supports sophisticated business centric views of storage environments, such as adherence to service level agreements and data usage trends to forecast future storage requirements.

- **Hitachi Dynamic Link Manager**: Supports the use of multiple paths between resources such as hosts and storage for path fail-over and load balancing.

- **Hitachi Global Link Manager**: Supports management of multi-path management software between resources, such as hosts and storage.

Each product must be licensed for use in HCS. At minimum, you must license Device Manager. Additional licensing can be added as needed for other storage management products. Related functionality becomes available in the HCS user interface in the form of activated menu choices, and new or updated tabs and related screens and buttons.

For Hitachi Virtual Storage Platform G1000, additional functionality for configuring the storage system is available from launch points in HCS to Hitachi Device Manager - Storage Navigator. Use the right-click menu from the list of storage systems on the Resources tab, or click the System GUI link on the application pane to access the additional functionality.

Instances of the management software products above can be installed on one or more HCS servers depending on the scale of resources under management and geographic location. For information about supported HCS server operating systems and other system requirements, see *Hitachi Command Suite System Requirements*. For information about product
installation options, see the Hitachi Command Suite Installation and Configuration Guide.

Related concepts

- Features on page 21
- What's new on page 22
- System configuration on page 23
- Navigating the interface on page 27
- Navigating help on page 29

Related tasks

- Logging in to Hitachi Command Suite on page 39

Features

Hitachi Command Suite provides a wide variety of security, scalability, data migration, replication, performance, and administrative features for managing your storage system needs in this release.

Hitachi Command Suite includes the following functionality:

- Server architecture supports resource scalability (millions of storage objects) and geographic scalability.
- Provides secure remote management over Internet and wide area networks (WANs) using a sophisticated web client.
- Provides multiple levels of security and access for storage administrators, integration with external authentication servers, and use of resource groups to control access to specific resources.
- Security tools to prevent unauthorized access, such as account locking, and restricted login retry attempts.
- Provides for automation scripts using component CLIs.
- Supports agentless discovery and mapping of servers (hosts) and storage.
- Supports hosts such as Microsoft Windows, Sun Solaris, HP-UX, IBM AIX, and Linux.
- Supports virtualization servers such as Microsoft Hyper-V and VMware ESX.
- Supports FC, iSCSI, and FCoE connected hosts.
- Supports a wide variety of block, file, unified (hybrid) and SMI-S compliant storage systems.
- Supports virtualization of volumes from external storage.
- Supports volume migration between supported source and target storage systems.
- Provides simplified volume provisioning in complex environments.
- Provides logical, physical, and host view storage management.
- Provides efficient, cost effective use of storage capacity as needed using DP pools.
• Supports optimized application performance with an installed Tiered Storage Manager license when DP pools are configured to support performance tiers. Using the Mobility tab, you can optimize data placement tasks when migrating online data between tiers.
• Supports analyzing storage system performance with an installed Hitachi Tuning Manager license, by using the Analytics tab.
• Integrates with other products and software tools that provide extended capabilities. For example, integration with Hitachi Command Director supports SLA/SLO compliance monitoring and reporting and links with native storage management tools where necessary.
• Provides volume replication services for data protection and supports analyzing Universal Replicator C/T delta performance on the Replication tab (with an installed Hitachi Replication Manager and Hitachi Tuning Manager license).
• Provides keyword and criteria based searching of managed resources, and managed resource reporting with data export to CSV files.

Related concepts

• [About Hitachi Command Suite](#) on page 20

What's new

Hitachi Command Suite v8.1.0 includes the following new or enhanced functionality:

Device Manager now supports:

• For the Hitachi Virtual Storage Platform G1000, Hitachi Virtual Storage Platform, and Hitachi Unified Storage VM, the Analytics tab supports:
 ○ Ability to plan and view load balancing for MP blades and MP units.
 ○ Reports in Health Check for busy pools by MB/s and busy parity groups by utilization.
 ○ Metrics for port and pool in the Identify Performance Problems wizard.
• Configuration of volumes migrated by nondisruptive migration as global-active device pair volumes in Hitachi Virtual Storage Platform G1000.
• Protecting the virtual volume for a Hitachi Dynamic Provisioning pool in a Hitachi Virtual Storage Platform G1000 when the pool capacity is depleted or the pool volume is blocked.
• For the Hitachi Virtual Storage Platform G1000, you can now enable high temperature mode.
• Users can now belong to both built-in user groups and other user groups.
• You can now create resource groups for DP pools.
• Externally authorized groups can now be assigned to the default resource group, resource pool, and user-defined resource group types.
• Device Manager agent for Linux allows changing the installation directory during a new installation.
Tiered Storage Manager now supports:

- For the Hitachi Virtual Storage Platform G1000, Tiered Storage Manager supports the following functionality for shrinking pools without changing the number of tiers and without substituting tiers.
 - When you shrink a pool during data relocation, the data relocation continues after pool shrinkage is complete.
 - When relocating data after pool shrinkage is complete, you can relocate the data based on the monitoring before the pool shrinkage.

This list highlights new software (GUI) features. It is not an exhaustive list of enhancements.

For complete information about new features and enhancements, see *Hitachi Device Manager Release Notes* and *Hitachi Tiered Storage Manager Release Notes*.

For a complete list of system requirements for the management server, Host Data Collector, Device Manager agent, CLI, and storage systems, see *Hitachi Command Suite System Requirements*.

Related concepts

- About Hitachi Command Suite on page 20
- About analyzing storage system performance on page 403
- About user groups on page 102
- About resource groups on page 97
- About high temperature mode on page 317

Related tasks

- Analyzing and load balancing MP Blades or MP Units on page 407
- Creating a DP pool on page 162

Related references

- Create Pool dialog box on page 164

System configuration

As part of a basic storage network configuration, Hitachi Command Suite is comprised of HCS server-based components, agents, and clients that enable you to manage storage resources.

The following figure illustrates Hitachi Command Suite management server components, and the basic configuration of the storage network.
Management servers

- The management server is where HCS is installed.
- The management server communicates with management clients, storage systems, pair management servers, file-servers, and hosts over LAN connections.
- Additional software can be installed on the management server to provide extended management capabilities.
- The management server can be configured in an active-standby cluster configuration consisting of two physical servers.

Management server components

The HCS base installation consists of the following components, which are always installed or removed together on the management server:

- **Hitachi Command Suite Common Component**
 Provides user account management, security monitoring, and other functions common to all HCS products.

- **Device Manager server**
HCS uses this component to manage storage system volumes.

- **Tiered Storage Manager server**
 Tiered Storage Manager uses this component to manage storage system volume migration.

- **Replication Manager server**
 Replication Manager uses this component to manage storage system volume replication.

- **Host Data Collector**
 HCS uses this component to collect information about the volumes used by the hosts.

Note: The Host Data Collector component can be installed on other servers and accessed remotely by HCS.

Management clients
- Manage storage resources from the management server by using the HCS web client (GUI), or by using the CLI client software to issue commands.
- **CLI client components (Device Manager and Tiered Storage Manager)** require a separate installation from the web client.
- From the web client, with a Device Manager license, launch Replication Manager to use a subset of Replication Manager functionality.

Hosts
- File servers and hosts (application servers) access volumes in storage systems that are managed by HCS.
- Hosts access storage over SAN (Fibre Channel) or LAN (iSCSI and FCoE) connections.
- Hosts can be virtualization servers (VMware ESX/ESXi) and their virtual machines, and mainframe hosts.
- Hosts can be file servers (Hitachi NAS Platform family, Hitachi NAS Platform F, and Hitachi Data Ingestor).

File servers and hosts (application servers) access volumes in storage systems that are managed by HCS over a Storage Area Network (SAN) or an IP-SAN.

Pair management servers
- Collects management information about copy pair configurations and related status information, and provides for copy pair operations.
- **Command Control Interface (CCI) and Device Manager agent** are installed for copy pair monitoring and management.
For information about performing the base installation, see the *Hitachi Command Suite Installation and Configuration Guide*.

For information about customizing and extending the base installation, see the *Hitachi Command Suite Administrator Guide*.

Related concepts

- [About Hitachi Command Suite](#) on page 20

Process flow

The following graphic illustrates the flow of system operations when using Hitachi Command Suite and Hitachi Tiered Storage Manager.

- **Server configuration steps** are related to installing and configuring the server itself.

 For more information on server installation and configuration, see:

 - [Hitachi Command Suite Installation and Configuration Guide](#)
 - [Hitachi Command Suite Administrator Guide](#)

- **Client operation steps** are illustrated and explained further with workflow graphics and comments in this user guide.

- **Maintenance** refers to troubleshooting the server if issues arise when running Hitachi Command Suite.
Navigating the interface

Hitachi Command Suite provides a sophisticated interface with elements such as menus, tabs, navigation options, application details, status information and search options supporting ease of use and flexibility for storage and server resources.

Interface elements
- Global task bar - always visible, forward/back navigation buttons, clickable navigation history (down arrow), menu access to licensing and help (Help), launching licenced options (Tools), and Log Out for exiting Hitachi Command Suite.
- Global tabs - always visible, provides access to applications.
• Search - always visible, provides keyword and criteria-based search.

• Navigation pane - differs by tab, provides access to resources and commonly-used tasks.

• Application pane - differs by tab, provides resource summary information, resource object list, and related drill down details.

• Global monitoring bar - always visible, provides links for submitted tasks by status.

Navigation pane
• Accordion menus provide easy access to resource trees.

• Resize panes by dragging divider bars. Collapse panes by clicking divider bar arrows.

• Access frequently needed tasks under General Tasks. Click More... to see hidden general tasks.

Application pane
• Minimize and expand panes by using the double arrow symbol in the title.

• Click Column Settings to display or hide columns, change column order, or view column descriptions.
• Right-click a table heading and select menu options, such as Hide Column or Show all Columns.

• Arrange columns by using drag-and-drop.

• Sort lists by clicking the column title.

• Navigate large lists by using Page controls.

• Click Filter to reduce large lists, or to find specific items by defining specific search conditions. Filter allows multiple conditions to be defined.

• In a list, click a link to display more detail about the item. As you drill-down, the breadcrumb list (item > detail) above the summary pane is updated and serves as a useful navigation tool.

• In a list, rows are highlighted as you roll your mouse over them, indicating your row position. To select a specific item, select the desired check box or click the row and the darker highlight indicates the row is selected.

• To select multiple rows, select the desired check boxes or rows. You can also use Shift+click to select a range of items. To select all rows, select the check box for the title row, or uncheck the check box to de-select all rows.

• Selecting rows implies you intend to perform an action on the selected item or items. Actions are initiated with buttons or from the Actions menu.

• To copy cell or row data, select one or more rows with data, right-click and select Copy This Cell or Copy Selected Rows. This is useful for emailing small amounts of data about a storage resource. If you select empty rows, the copy options do not appear when you right-click. For reporting on large numbers of objects and for more complete data, use CSV export.

Related concepts

• About Hitachi Command Suite on page 20
• Navigating help on page 29

Navigating help

The Help system provides brief explanations of the features of this product and helps you understand its capabilities. Navigating is the means by which you access the information in the Help system.

When you access Help > Online Help from the menu bar, the navigation pane displays.

If you select the help icon [?] from the application pane or a dialog box, click Show All Contents to display the navigation pane and access the Contents, Index, Search, and Glossary.
Navigating

- To navigate between topics, use the navigation pane, or right-click the topic and select Back or Forward.

- Use the breadcrumb trail at the top of each topic to see your location, or to return to a higher level topic.

- To find information for a specific topic, click the Related topics links.

Using navigation buttons

- Contents
 Open book icons in the navigation pane to reveal topic entries and subsections. As you move through Help, the current topic is highlighted.

- Index
 An alphabetical list of topics. Click an Index entry to display one or more topics that you can choose to view.

- Search
 Search for word or phrase occurrences. Click search results to display the corresponding topics.

- Glossary
 Provides brief explanations of product-related terms.

Printing topics

- To print topics, right-click the topic and select Print or click the printer icon on the button bar.

Related concepts

- About Hitachi Command Suite on page 20
- Navigating the interface on page 27
Setting up Hitachi Command Suite

This module describes how to configure basic Hitachi Command Suite settings.

- Configuring Hitachi Command Suite
- Configuring your browser and Java for Hitachi Command Suite
- Logging in to Hitachi Command Suite
- Logging in when HCS is not available
- Setting up security
- Downloading components
- Managing HCS licenses
- Managing Storage Navigator licenses
Configuring Hitachi Command Suite

Initial configuration of HCS, including configuring access to Hitachi Device Manager - Storage Navigator requires setting up the browser environment, licensing, logging in, and registering users.

The following graphic illustrates the required tasks:
- Configure your browser environment to correctly display and run Hitachi Command Suite. If you have issues, verify your browser setup.
- Log in to HCS. Note that you can register licenses from the login screen.
- Register your users (create user accounts).

Note: Typically, user accounts are created so that storage administration can be shared or delegated, or to control access to specific storage resources.

Related tasks
- Creating a user account on page 87

Configuring your browser and Java for Hitachi Command Suite

To communicate with the Hitachi Command Suite management server and Hitachi Device Manager - Storage Navigator, you must configure your browser and Java settings.

About configuring browser settings

Before using a browser to access HCS or Hitachi Device Manager - Storage Navigator, configure security and other settings.

Perform the following configuration tasks:

Note: When using a Virtual Storage Platform G1000 storage system, the IP address or host name of the service processor (SVP) must be set.
• Disable pop-up blocking
• Disable plug-ins
• Set security options
• Configure proxy settings
• Configure log output settings
• Configure Java Web Start settings
• Clear your browser’s cache when upgrading
• Browser must allow first-party, third-party, and session cookies

Note: For specific instructions on configuring your browser, refer to the browser product documentation.

After you configure your browser settings, verify the following:
• The Java™ software environment is installed and the Java software is configured
• Communications with HCS are secure
• Check the management server name resolution

Note: If you have issues with general access, or with using a component of Hitachi Command Suite, first verify that the problem is not related to the management server, or a network connectivity issue.

For troubleshooting problems related to Device Manager servers, see the Hitachi Command Suite Administrator Guide.

Related tasks
• Checking management server name resolution on page 33
• Setting security options for using Internet Explorer on page 35
• Setting security options for Firefox on page 36
• Setting the Java™ Web Start (versions 6.0 and 7.0) proxy to link with other products on page 37
• Configuring JRE versions from JWS version 6.0 on page 38
• Clearing the cache (JWS v6.0) when upgrading Hitachi Command Suite on page 38

Checking management server name resolution
HCS management servers host names must resolve to an IP address.

After logging in to Device Manager, before you can start another HCS product, such as Replication Manager or Tuning Manager, or if you are managing a Virtual Storage Platform G1000, the host name of the management server must be set so that it can be resolved to the IP address. If the name cannot be resolved, startup of the HCS product might fail or the Help might not display correctly.
Procedure

1. Verify whether the management server on which products such as the Device Manager server, Tuning Manager server, or Replication Manager server are installed can be accessed by using the host name.

Note: If you are having issues with general access, or with using a component of Hitachi Command Suite, first make sure the problem is not related to the management server, or related to networking.

For troubleshooting problems related to Device Manager servers, see the Hitachi Command Suite Administrator Guide.

Related concepts

- About configuring browser settings on page 32

Disabling pop-up blocking for Internet Explorer

You can disable pop-up blocking, or configure URLs, so that HCS can display all windows.

If you are using HCS on a browser for which pop-up blocking is enabled, you must disable pop-up blocking.

Alternatively, you can register the URLs of HCS products and the IP address or host name of SVP as allowed sites.

If SSL or TLS is being used for communication between the management server and the management client, also register the URLs for SSL communication in the pop-up blocker settings.

Prerequisites

The IP address or host name of the Device Manager server

Tip: For Internet Explorer, in When a pop-up is encountered, select a radio button other than Always open pop-ups in a new tab, or the pop-up might be displayed behind another window. If you receive a pop-up blocked warning message, you can unblock pop-ups so that they will be displayed at all times.

Procedure

1. Start Internet Explorer.
2. From the Tools menu, select Pop-up Blocker, then select Pop-up Blocker Settings.
3. Add the URLs below to the Address of website to allow text box, and then click Add.

For SSL: https://IP-address-or-host-name-of-the-Device-Manager-server
For non-SSL: http://IP-address-or-host-name-of-the-Device-Manager-server

Related concepts
• About configuring browser settings on page 32

Setting security options for using Internet Explorer
To communicate with the HCS management server and Hitachi Device Manager - Storage Navigator, and for correctly displaying windows when using Internet Explorer, configure Internet Explorer security options.

Note: To communicate with Hitachi Device Manager - Storage Navigator on a Virtual Storage Platform G1000 storage system, the IP address or host name of the service processor (SVP) must be registered as a trusted site in Internet Explorer.

Procedure
1. Start Internet Explorer.
2. From the Tools menu, select Internet Options.
3. In the Internet Options dialog box, click the Security tab, and then click Trusted sites.
4. Click Sites and add the IP address or host name (alias name) for Device Manager and the related management servers that contain the software to be started from Device Manager. To manage a Virtual Storage Platform G1000, you must also add the URL for the SVP.
5. Click Custom Level.
6. In the Security Settings dialog box, verify that the items in the dialog box are configured as follows:
 • Run ActiveX controls and plug-ins is set to Enable.
 • Script ActiveX controls marked safe for scripting is set to Enable.
 • Launching programs and files in an IFRAME is set to Prompt or Enable.
 • Submit non-encrypted form data is set to Prompt or Enable.
 • Active scripting is set to Enable.
 • File download is set to Enable.
 • Allow Web sites to prompt for information using scripted windows is set to Enable.
7. In the Internet Options dialog box, select the Privacy tab, and then enable cookies.
8. In the Internet Options dialog box, select the Advanced tab, then select Use TLS 1.0, Use TLS 1.1, and Use TLS 1.2, Warn about certificate address mismatch, and Show pictures. For the Virtual Storage Platform G1000 clear the do not save encrypted pages to disk check-box.
9. If the logged-in user does not have administrator permissions and uses Internet Explorer 10 or 11, disable the protected mode.

10. From the **Tools** menu, select **Manage Add-ons**, and enable **Shockwave Flash Object**.

11. If Internet Explorer 10 or 11 is used in Windows Server 2012, start the server manager. Select in the sequence of **Dashboard, Add roles and features** wizard, and **Features**, and then install **Desktop Experience**.

Result

Security options are set.

Note that when using Internet Explorer in Windows Server 2008 or Windows Server 2012, if the loading animation does not start or if files cannot be downloaded from a server for which HTTPS is enabled, disable Internet Explorer Enhanced Security Configuration.

If you use Internet Explorer 10 or 11, specify the same protected mode for the Internet domain for accessing Device Manager and for the Internet domains of other programs that cooperative with Device Manager. If different modes are specified, the other programs cannot start. For example, in the case that Device Manager and Tuning Manager server are connected remotely.

The following problems might occur:
- Online Help might not display properly.
- An error message displays that indicates that Adobe Flash Player is not installed.

If you encounter these problems, disable ActiveX filtering, and from Internet Explorer, in Compatibility View settings, register the IP address or the host name of the Device Manager server. If the online Help does not display properly even after these settings are applied, press F5 to refresh the browser window.

Tip: Set the text size to Medium or Larger. If you set text size to Largest, text characters might overlap.

Related concepts
- [About configuring browser settings](#) on page 32

Related tasks
- [Disabling pop-up blocking for Internet Explorer](#) on page 34

Setting security options for Firefox

To communicate with the HCS management server and Hitachi Device Manager - Storage Navigator, configure Firefox security options.

Firefox settings not described here are optional.
Note: To communicate with Hitachi Device Manager - Storage Navigator on a Virtual Storage Platform G1000 storage system, the IP address or host name of the service processor (SVP) must be set.

Procedure

1. Start Firefox.
2. In the environment settings window, set the items as follows:
 - Enable first-party, third-party, and session cookies.
 - Disable pop-up blocker and plug-ins.
 - Enable TLS 1.0, TLS 1.1, and TLS 1.2 when using Virtual Storage Platform G1000.
 - Load images automatically (for Firefox versions earlier than ESR 24).
 - Enable JavaScript (for Firefox versions earlier than ESR 24).
 - Use the default font.

Related concepts

- **About configuring browser settings** on page 32

Setting the Java™ Web Start (versions 6.0 and 7.0) proxy to link with other products

You must set up Java Web Start so that it uses the correct version of JRE to execute the JAVA GUI to run with other products. This procedure is for Java Web Start versions 6.0 and 7.0.

Note: To connect to Hitachi Device Manager - Storage Navigator behind restrictive firewalls, you must set up a proxy to route communications between HCS and Hitachi Device Manager - Storage Navigator, and then configure Java Web Start to use the correct proxy settings to enable communication.

Procedure

1. Start the Java Control Panel.
2. On the **General** tab, click **Network Settings**.
3. In the **Network Settings** window, select the method to be used to set up the proxy.
 - If the proxy setting is enabled in the web browser, select **Use browser settings**, and then proceed to step 7.
 - To manually set up a proxy, select **Use proxy server**, enter the following values, and proceed to step 4.
 - **Address**: IP address or name of the proxy server
- **Port**: Port number of the proxy server

 - If not setting a proxy, select **Direct connection** and proceed to step 7.

4. Click **Advanced**.
 The **Advanced Network Settings** window appears.

5. In the exceptions field, enter the IP address or the name of the Device Manager server.

6. Click **OK**.

7. In the **Network Settings** window, click **OK**.

8. In the **Java Control Panel**, click **OK** and exit the control panel.

Related concepts

- [About configuring browser settings](#) on page 32

Configuring JRE versions from JWS version 6.0

When there are multiple versions of JRE and some of these versions are the same as or later than the version required for a Java application, Java™ Web Start determines which version of JRE to use.

You must set up Java Web Start version 6.0 so that it uses the correct version of JRE to start the GUI.

Note: For GUI requirements, see the *Hitachi Command Suite System Requirements*.

Procedure

1. Set up the JRE version required to use Java control panel. Use the setup method appropriate to the JWS version.
 - For JWS version 6.0, use the Java control panel.
 - For GUI requirements, see the *Hitachi Command Suite System Requirements*.

Related concepts

- [About configuring browser settings](#) on page 32

Clearing the cache (JWS v6.0) when upgrading Hitachi Command Suite

After upgrading HCS, you must clear the cache for Java™ Web Start and for your browser.
Procedure

1. For Java™ Web Start version 6.0 use the Java Control Panel to delete temporary internet files.
2. For the browser you are using, delete temporary internet files.

Related concepts

- About configuring browser settings on page 32

Logging in to Hitachi Command Suite

To log in to Hitachi Command Suite use the correct URL in your browser and register licenses if necessary.

Prerequisites

Before you can log in to Hitachi Command Suite, you must first register valid licenses using the Licenses button.

Note: To log in with a user account other than a built-in user account, you must first set up new user accounts, or user groups and roles. This requires the User Management permission, and the Admin role for All Resources.

Procedure

1. Start a web browser and enter the URL of the HCS server:

 http://server-IP-or-name:port-number/DeviceManager/

 - server-IP-or-name: IP address or host name of the Device Manager server.
 - port-number: Port number of the HBase Storage Mgmt Web Service.

 URL examples:

 - http://localhost:22015/DeviceManager/
 - https://localhost:22016/DeviceManager/

 Note: Using the localhost name entry implies you are logged in at that server. To access the interface from another system, specify an IP address or host name in the URL. For a secure connection, use the https URL on port 22016.

2. Enter values in the User ID and Password fields, and click Log In.

Tip: To authenticate with an external authentication server, use its authentication password.
However, there is no content in the provided document. Please provide a document with content for analysis.
6. If an Adobe Flash Player local storage area pop-up dialog box appears, click **Allow** to open the Device Manager - Storage Navigator main window. The cache function of Flash Player optimizes the process of Device Manager - Storage Navigator. Denial of the request might reduce processing speed.

Note: If the login process fails three times with the same user ID, Device Manager - Storage Navigator will stop responding for one minute. This is for security purposes and is not a system failure. Wait, and then try again.

Setting up security

This module describes how to configure security settings and policies.

About configuring security options

For tighter login security, you can specify security options from HCS, such as:
- Password policy conditions to prevent users from specifying easy-to-guess passwords.
- Automatic locking of user accounts when successive login attempts have failed.
- Display of a specific message (a warning banner) during user login.

You can also set security options from the management server. For details, see the *Hitachi Command Suite Administrator Guide*.

Related tasks
- [Setting a password policy](#) on page 41
- [Setting automatic account locking](#) on page 42
- [Setting a warning banner message](#) on page 42

Setting a password policy

Create a password policy to enforce the use of strong passwords.

Procedure

1. On the *Administration* tab, select *Security* to launch the security window.
2. On the *Security* window, select *Password* to display the current password policy.
3. Click **Edit Settings** and configure a password policy. For example, configure a minimum password length, and a minimum number of required uppercase, lowercase, numeric, and symbolic characters.

4. Click **OK** to save the new password policy.

5. Select **Password** again to confirm the updated password policy.

Related concepts
- [About configuring security options](#) on page 41

Related tasks
- [Setting automatic account locking](#) on page 42

Related references
- [User ID and password policies](#) on page 87

Setting automatic account locking

A user account can be automatically locked after a specified number of failed login attempts. You can specify the number of failed attempts before a user account is locked by configuring an account lock policy.

Procedure

1. On the **Administration** tab, select **Security**.
2. From the tree, select **Account Lock**.
3. Click **Edit Settings** and specify a number.
4. Confirm the settings were changed by selecting **Account Lock** in the **Security** tree and viewing the current settings.

Related concepts
- [About configuring security options](#) on page 41

Related tasks
- [Setting a password policy](#) on page 41
- [Setting a warning banner message](#) on page 42

Setting a warning banner message

You can set a warning banner message that will appear in the Login window when a user logs on.

Procedure

1. On the **Administration** tab, select **Security**.
2. From the tree, select **Warning Banner**.
3. Click **Edit Message** and enter the warning message text in the **Message** box.
You can preview the message by clicking **Preview** and viewing the message in the **Preview** box.

4. Click **OK** to save the message.
5. Confirm the warning banner displays in the Login window.

Related concepts
- [About configuring security options](#) on page 41

Related tasks
- [Setting automatic account locking](#) on page 42
- [Setting a password policy](#) on page 41

Downloading components

This module describes how to download components.

About downloading components

A download menu allows you to download Device Manager agent, the CLI application, or Host Data Collector installation files.

Related tasks
- [Downloading agents, CLI, and Host Data Collector files](#) on page 43

Downloading agents, CLI, and Host Data Collector files

Use the download feature to download agents, the CLI application, or Host Data Collector installation files:

Procedure

1. From the **Tools** menu, select **Download**.
 - The download dialog box opens.
2. Choose from the links in the dialog box to download the desired installation files.
3. Click the **ReadMe** links for installation instructions.

Related concepts
- [About downloading components](#) on page 43

Managing HCS licenses

This module describes how to manage HCS licenses.
About HCS license management

Before you can log on to Hitachi Command Suite, you must register valid HCS licenses.

Each product managed from HCS also requires a registered license.

Licenses that are registered while you are logged in are not enabled until you log out and log in again.

The following license types are available:
- Permanent
- Term
- Subscription
- Emergency
- Temporary

Note: Before you log in for the first time, a License Alert appears on the login window.

When a problem occurs, such as when a license expires or capacity limits are exceeded, an alert is displayed in the main window.

Related tasks
- [Registering an HCS license](#) on page 44
- [Checking HCS license information](#) on page 45

Registering an HCS license

Before you can log on to Hitachi Command Suite, you must register valid HCS licenses.

Each product managed from HCS also requires a registered license.

Procedure

1. On the login window, click **Licenses**.

 If you are already logged in, from the **Help** menu, select **About**.

2. See **License Type** and **License Messages** to review the current status of licenses.

3. Register one or more licenses using one of these methods:
 - Enter the license key manually
 - Specify the license key file (recommended)

4. Click **Save**.

 If you registered the license after you logged in, you must log out and then log in again for the license to be enabled.

5. Confirm that the license is successfully registered by viewing the displayed message.
Checking HCS license information

You can check license information and the license expiration date. All users can perform this task.

Procedure

1. On the login window click **Licenses**. If you are already logged in, from the **Help** menu, select **About**.
2. Check the license status displayed in **License Type** and **License Messages**.
3. Click the license name link for each product to check the storage capacity limit and expiration date for each license.

Managing Storage Navigator licenses

This module describes how to manage Storage Navigator licenses.

About license key types

To use a particular software application, you must enter a unique license key for the software application in Device Manager - Storage Navigator. License keys are provided when you purchase VSP G1000 software. The license key types are described in the following table:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Effective term</th>
<th>Estimating licensed capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>permanent</td>
<td>For purchase</td>
<td>No limit</td>
<td>Required</td>
</tr>
<tr>
<td>term</td>
<td>For purchase</td>
<td>365 days</td>
<td>Required</td>
</tr>
<tr>
<td>temporary</td>
<td>For trial use before purchase (Try and Buy)</td>
<td>120 days</td>
<td>Not required</td>
</tr>
<tr>
<td>emergency</td>
<td>For emergency use</td>
<td>30 days</td>
<td>Not required</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
<td>Effective term¹</td>
<td>Estimating licensed capacity</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>

Note:

1. When you log in to Device Manager - Storage Navigator, a warning message appears if 45 days or less remain before the expiration.

Related tasks

- [Enabling a license](#) on page 47
- [Viewing license information](#) on page 49
- [Installing a software application](#) on page 46

Installing a software application

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems:
 Select **License Keys**.
 - For other available storage systems:
 From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. In the **License Keys** window, click **Install Licenses**.
4. Select whether to enter a key code or specify a license key file.
 - **Key Code**: Enter a key code to install the software. In **Key Code**, enter the license key code for the software.
 - **File**: Specify a license key file to install the software. Click **Browse** and specify the license key file. You can use a file name of up to 200 alphanumeric characters (ASCII codes) excluding several symbols ("", \, ; , :, *, ?, <, >, |, / ,). The file extension is "plk".
5. Click **Add**.
6. In the **Selected License Keys** table, set the status of license keys for each software application.
 - **Enable Licenses**: Installs license keys in enabled status. You can select more than one software application to install licenses for.
 - **Disable Licenses**: Installs license keys in disabled status. You can select more than one software application to install licenses for.
 - **Clear All**: Delete all license keys from the Selected License Keys table.
7. Click **Finish**. The **Confirm** window opens.
8. In the Confirm window, check the settings and enter a task name in Task Name.
9. Click Apply. The task is registered. If the Go to tasks window for status check box is checked, the Task window opens.
 If a software installation fails, the Error Message window opens. To display the cause of the error, from the Error Message window, select the software and click Detail.

Related concepts
• About license key types on page 45

Related tasks
• Removing a software application on page 48

Enabling a license

You can enable a license that is in disabled status.

Procedure
1. On the Resources tab, expand the Storage Systems tree, and select the target storage system.
2. Choose one of the following options.
 • For Virtual Storage Platform G1000 storage systems: Select License Keys.
 • For other available storage systems:
 From the Actions list in the application pane, select Element Manager. Refer to the documentation for the native management tool for your storage system.
3. Select the license to enable. You can select more than one license to enable at the same time.
4. In the License Keys window, click Enable Licenses.
5. Check the settings and click Apply.

Related concepts
• About license key types on page 45

Related tasks
• Updating license status on page 49
• Disabling a license on page 47

Disabling a license

You can disable a license that is in enabled status.
Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Select **License Keys**.
 - For other available storage systems:
 From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. Select the license to disable. You can select more than one license to disable at the same time.
4. In the **License Keys** window, click **Disable Licenses**.
5. Click **Finish**.
6. Check the settings and click **Apply**.

Related tasks
- [Enabling a license](#) on page 47

Removing a software application

⚠️ **Note:** On rare occasions, a software option that is listed as Not Installed but still has available licensed capacity (shown as XX TB) might remain in the list. In this case, select that option and uninstall the software.

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Select **License Keys**.
 - For other available storage systems:
 From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. In the **License Keys** window, select the license to remove. You can select more than one license at the same time.
4. In the **License Keys** window, click **Uninstall Licenses**.
5. Check the settings and click **Apply**.

Related tasks
- [Installing a software application](#) on page 46
Updating license status

In the following cases, the status of software may remain at Not Enough License or Grace Period. In that case, update the license status.

- When the licensed capacity exceeds the mounted capacity after you reduce the number of LDEVs
- When the licensed capacity exceeds the used capacity after you delete pairs or pool volumes

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Select **License Keys**.
 - For other available storage systems: From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. In the **License Keys** window, click **Update License Status**.
4. Check the settings and click **Apply**.

Related tasks

- [Enabling a license](#) on page 47

Viewing license information

You can view license information for each software product using the **License Key** window.

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Select **License Keys**.
 - For other available storage systems: From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
To review descriptions of fields in the License Keys window, see License information on the License Keys window on page 50.

Related concepts
- About license key types on page 45

Related references
- License information on the License Keys window on page 50

License information on the License Keys window

The information you see on the License Keys window is described below.

<table>
<thead>
<tr>
<th>License key status (example)</th>
<th>Status</th>
<th>Key type</th>
<th>Licensed capacity</th>
<th>Term (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not installed</td>
<td>Not installed</td>
<td>blank</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>Installed with the permanent key</td>
<td>Installed</td>
<td>permanent</td>
<td>Permitted</td>
<td>Number of remaining days before expiration</td>
</tr>
<tr>
<td>Installed with the term key and set to Enabled</td>
<td>Installed</td>
<td>term</td>
<td>Permitted</td>
<td>Number of remaining days before expiration</td>
</tr>
<tr>
<td>Installed with the term key and set to Disabled</td>
<td>Installed (Disabled)</td>
<td>term</td>
<td>Permitted</td>
<td>-</td>
</tr>
<tr>
<td>Installed with the temporary key.</td>
<td>Installed</td>
<td>temporary</td>
<td>-</td>
<td>Number of remaining days before expiration</td>
</tr>
<tr>
<td>Installed with the emergency key.</td>
<td>Installed</td>
<td>emergency</td>
<td>-</td>
<td>Number of remaining days before expiration</td>
</tr>
<tr>
<td>A temporary key was installed, but has expired.</td>
<td>Expired</td>
<td>temporary</td>
<td>-</td>
<td>Number of remaining days before expiration</td>
</tr>
<tr>
<td>A term key or an emergency key was installed, but has expired.</td>
<td>Not installed</td>
<td>blank</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>Installed with the permanent key or the term key, but the licensed capacity was insufficient.</td>
<td>Not Enough License</td>
<td>permanent or term</td>
<td>Permitted and Used</td>
<td></td>
</tr>
<tr>
<td>Installed with the permanent or term key, and then LDEVs are added, but the license capacity was insufficient.</td>
<td>Grace Period</td>
<td>permanent or term</td>
<td>Permitted and Used</td>
<td>Number of remaining days before expiration</td>
</tr>
<tr>
<td>Installed with the temporary key, and then reinstalled with the permanent key, but the</td>
<td>Installed</td>
<td>temporary</td>
<td>Permitted and Used</td>
<td>Number of remaining days before expiration</td>
</tr>
<tr>
<td>License key status (example)</td>
<td>Status</td>
<td>Key type</td>
<td>Licensed capacity</td>
<td>Term (days)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>license capacity was insufficient.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed with the permanent or term key, then reinstalled with the emergency key.</td>
<td>Installed</td>
<td>emergency</td>
<td>Permitted and Used</td>
<td>Number of remaining days before expiration</td>
</tr>
</tbody>
</table>

Related tasks

- [Viewing license information](#) on page 49
Discovering, registering, and adding management targets

Managing storage resources requires them to be registered in Hitachi Command Suite. Registration automatically occurs after discovery.

- Setting up storage resources
- Registering storage systems
- Registering hosts
- Registering file servers
Setting up storage resources

Collectively, storage systems, file servers, and hosts are called storage resources. For storage resources to be managed by HCS, they must first be discovered and registered.

Registering storage resources requires each resource to be reachable on the network by its IP address. After storage and host resources are registered, you can begin allocating volumes to hosts.

Before discovering each resource, verify the system prerequisites, and check settings requirements for the corresponding system configuration described in the *Hitachi Command Suite Administrator Guide*.

Configure the prerequisite environment based on requirements. For example, install and enable software licenses by using Storage Navigator, Hitachi Storage Navigator Modular 2, or other storage management tools, or configure a network based on the system configuration.

If Device Manager is set up in an environment that has already been configured using Storage Navigator, and if you want to use volume labels and DP pool names from a storage system in Device Manager, register the storage system in Device Manager, and then apply the storage system resource labels to Device Manager.

The following figure describes the basic task flow for setting up storage resources.

![Task Flow Diagram]

Registering storage systems

Before you can manage a storage system's resources, you must first register the storage system.
About registering and removing a storage system

Registering a storage system in HCS is done when it is discovered, which then enables you to manage its resources, including:

- Parity Groups
- LDEVs
- Volumes
- DP pools
- Resources available through external storage connections

When you specify IP address (or host name) and authentication information for a storage system, the storage system is discovered and registered based on the specified information. For Storage Management Initiative Specification (SMI-S) enabled storage systems, the SMI-S provider's IP address is used.

You can modify information about a storage system after a storage system is registered.

If managing a storage system with HCS is no longer necessary (for example because of reorganization), you can remove the registered storage system. Removing a storage system results in the following:

- Configuration information such as parity groups, volumes, and allocated paths are retained within the storage systems.
- Any information configured or specified in HCS, such as tiers and data placement profiles, is deleted.

Related concepts

- [About acquiring the most recent storage system information](page 59)

Related tasks

- [Registering a storage system](page 57)
- [Changing storage system information](page 58)

Related references

- [Prerequisites for registering a storage system](page 55)

Prerequisites for registering a storage system

Before you can discover and register a storage system, collect storage system-related information and complete the following prerequisite tasks.

Collect and confirm the following storage system information

- Storage system type
- Storage system IP address (IPv4 or IPv6) or host name (alias name)
- Authentication information:
 - User name and password for Storage Navigator (used with enterprise-class storage systems or HUS VM). If you have a mid-range storage
system, use your user name and password for Account Authentication or Password Protection.

Note:
• Avoid using built-in user account names for Account Authentication. Changing the registration account password on the storage system requires that you also change the password using the Administration tab.
• User names and passwords are not required when Password Protection or Account Authentication is not in use.

• For SMI-S enabled storage systems:
 ○ Host name (alias name) or IP address for the SMI-S provider (IPv4 or IPv6).
 ○ User name and password
 ○ Port number
 ○ Protocol used for Device Manager and SMI-S provider communication.

Complete these required tasks
• Connect the target storage system to the network.
• For enterprise-class storage systems or HUS VM:
 ○ Register required accounts for Device Manager in Storage Navigator. For information about creating Storage Navigator accounts, see the Hitachi Command Suite Installation and Configuration Guide.

Note: For Virtual Storage Platform G1000, Virtual Storage Platform, or HUS VM, you must select the Administrator user group (which is a built-in group) to register the accounts.

• For Virtual Storage Platform G1000 storage systems:
 ○ Enable SSL communications on the Device Manager server and configure any required firewall exceptions for using HCS authentication for SVP and Command Control Interface (CCI) logins. For details, see the Hitachi Command Suite Administrator Guide.
• For mid-range storage systems:
 ○ Register required accounts for Device Manager in Hitachi Storage Navigator Modular 2 (when Password Protection or Account Authentication is used). For information about creating Storage Navigator accounts, see the Hitachi Command Suite Installation and Configuration Guide.

Note: The "Storage Administrator (View and Modify)" and "Account Administrator (View and Modify)" roles are required for the account when Account Authentication is used.

• For SMI-S enabled storage systems:
- Verify that the SMI-S provider is specified.

Related concepts
- About registering and removing a storage system on page 55
- About user accounts and controlling access to resources on page 84

Related tasks
- Registering a storage system on page 57
- Setting the Fibre Channel port address on page 221
- Setting the data transfer speed on a Fibre Channel port on page 220

Registering a storage system
A storage system must be registered in Hitachi Command Suite before it can be managed. After a storage system is discovered and registered, it becomes a managed resource.

Procedure
1. On the **Administration** tab, select **Managed Resources**.
2. On the **Storage Systems** tab, click **Add Storage System**.
3. Specify the storage system type and then provide the required information, depending on the storage system type that you choose:

<table>
<thead>
<tr>
<th>Storage system type</th>
<th>Required settings</th>
</tr>
</thead>
</table>
| All storage system types | • An IP address (or hostname).
 | • Authentication information (username and password) for most supported storage systems. |
| VSP G1000 | (Optional) Enable user account authentication
 | If authentication of user accounts is enabled:
 | • User accounts are authenticated by HCS when they log in to CCI and SVP.
 | • User accounts that are created in HCS can be used in CCI and in SVP, allowing centralized management of user accounts.
 | • From CCI or the SVP you will be able to perform tasks (such as, adding users to a user group, and assigning resource groups and roles to a user group) according to the access control settings made in HCS. If you want to create a new HCS user account for performing tasks on CCI or the SVP, in HCS set up access control for the storage resources.
| For mid-range storage systems| • Controller (0,1)
 | • Protocol information (secure, not secure) |

Note: In the event of the unavailability of the HCS server, CCI authentication will be forwarded directly to the SVP. If you register the same user accounts for HCS into the SVP, you can use the user account for the SVP to perform CCI authentication even if the HCS server is not running.
Storage system type

<table>
<thead>
<tr>
<th>Required settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SMI-S provider IP address</td>
</tr>
<tr>
<td>• Authentication information</td>
</tr>
<tr>
<td>• Protocol information (secure, not secure)</td>
</tr>
<tr>
<td>• And, possibly, specify a non-default port number</td>
</tr>
</tbody>
</table>

If an SMI-S provider that manages multiple SMI-S enabled storage systems is specified, all the SMI-S enabled storage systems under that provider are registered.

4. Click **OK**.

5. Check the **Data Collection Tasks** tab to verify that the task completes successfully.

6. When the task completes, confirm that the registered storage system appears on the **Storage Systems** tab of **Managed Resources**, or in the **Storage Systems** tree on the **Resources** tab.

Result

The storage system is now a managed resource and volumes can be allocated to managed hosts.

Tip: To remove storage systems, select one or more storage systems, and click **Remove Storage Systems**.

Related concepts

- [About registering and removing a storage system](#) on page 55
- [About user accounts and controlling access to resources](#) on page 84

Related tasks

- [Changing storage system information](#) on page 58

Related references

- [Prerequisites for registering a storage system](#) on page 55

Changing storage system information

You can modify the IP address, host name, or login information (user ID and password) for a storage system. You can select multiple storage systems to modify at one time, but when selecting multiple storage systems, only login information (user ID and password) can be modified.

Procedure

1. On the **Administration** tab, select **Managed Resources**.
2. On the **Storage Systems** tab, select the storage system, or storage systems, you want to modify.
3. Click **Edit Storage Systems**.
4. Specify the appropriate information and click **OK**.
5. Check the **Data Collection Tasks** tab to verify that the task has completed successfully.

6. Confirm that the information in the storage system list is updated.

Related concepts

- [About registering and removing a storage system](#) on page 55

Related tasks

- [Registering a storage system](#) on page 57

About acquiring the most recent storage system information

To get the most current information about a target storage system, manually refresh the system to display it.

When you click Refresh Storage System to refresh it, the following information is updated for storage resources:

- Volumes
- Parity groups
- DP Pools
- External storage connections

Tip: When data placement profiles for HDT volumes are being managed, you can specify an option in the Refresh Storage Systems dialog box to search for inconsistencies in data placement profiles.

To update information about hosts, such as the host name, WWNs, or iSCSI name, refresh the hosts.

To update host bus adapter (HBA) WWN nicknames, refresh one or more storage systems. Refreshing host information does not update WWN nicknames. When several WWN nicknames are assigned to a single HBA, only one of the nicknames is displayed for that HBA.

If connected to Hitachi Tuning Manager, users can also update performance information that is displayed in the Mobility tab. To automatically update the storage system information, specify proper settings in the `server.properties` file or `dispatcher.properties` file of the management server. For details about specifiable values, see the *Hitachi Command Suite Administrator Guide*.

Related concepts

- [About registering and removing a storage system](#) on page 55

Related tasks

- [Acquiring the most recent storage system information](#) on page 60
- [Viewing current storage system information](#) on page 401
Acquiring the most recent storage system information

Refreshing a storage system updates and displays the latest storage system information.

Procedure

1. On the Administration tab, select Managed Resources.
2. On the Storage Systems tab, select one or more storage systems to refresh.
3. Click Refresh Storage Systems, then click OK.
4. Check the Data Collection Tasks tab to verify that the task completed.

Result

Updated storage system information displays in the list of storage systems. Updated storage system information is also displayed on the Resources tab, in the Storage Systems tree.

Note: Label information for volumes and DP pools is not refreshed. To apply existing label information from a storage system to HCS, click Refresh Labels. For Virtual Storage Platform G1000, refreshing labels is unnecessary since label information from the storage system to HCS will always match.

Related concepts

- About acquiring the most recent storage system information on page 59

Operations available to SMI-S enabled storage systems

Discovering and registering storage systems that support an SMI-S provider for storage system management enables you to perform certain tasks.

The Storage Management Initiative Specification (SMI-S) defines software development standards in support of storage management interoperability. An SMI-S provider is the software component that resides on a resource, such as a storage system, providing network management (over HTTP/HTTPS) by management clients, such as Hitachi Command Suite.

When you manage storage systems that support an SMI-S provider, the SMI-S enabled storage systems become Hitachi Command Suite resources on which you can perform the following tasks:

- Register, change, delete, and update the SMI-S enabled storage systems.
- Display summary information for SMI-S enabled storage systems.
- Operate SMI-S enabled storage systems from the SMI-S enabled storage system management tool (launch the management tool from Element Manager).
- Externally connect and virtualize an SMI-S enabled storage system for migrating data.
Tip: Virtualizing an SMI-S enabled storage system without registering the system in HCS can also be done by using the port scan and volume discovery functionality.

You must be assigned All Resources to view or perform tasks on SMI-S enabled storage systems.

Related tasks
- Migrating data from an SMI-S enabled storage system to another storage system on page 346
- Discovering and virtualizing volumes of an unregistered storage system on page 152

Registering hosts

You can register hosts as managed resources using Device Manager so that storage system volumes can be used by hosts and their applications.

About registering a host

Discover and register hosts to manage them in Hitachi Command Suite.

The following host types can be added to HCS:
- Normal hosts (an open host that is not virtualized)
- Virtualization servers (a physical server on which virtualization software is installed)
- Virtual machines (a machine that is created on the virtualization server and uses virtualization software)

Depending on the purpose, there are multiple methods for discovering and adding hosts, including manually, by using Host Data Collector (agentless discovery), or by using a Device Manager agent. For host prerequisites and environment settings, see the Hitachi Command Suite Administrator Guide.

You can also monitor the usage status of storage resources from the host point of view by generating reports that reflect the actual capacity being used by each host.

Related concepts
- Methods for registering hosts on page 61
- About changing host settings and information on page 68

Related references
- Priority for acquiring the WWN or iSCSI name on page 63

Methods for registering hosts

There are a variety of methods to register one or more hosts including using its WWN, using host-installed agents, or agentless discovery.
The following table describes the methods you can use to register one or more hosts:

Table 3-1 Methods for registering hosts

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To manually register individual hosts.</td>
<td>Register each host by WWN/iSCSI name.</td>
<td>To register hosts in HCS based on WWN/iSCSI name, manually specify the host name, OS type, and WWN/iSCSI name information. Hosts can be registered without Host Data Collector or Device Manager agent setup. Virtualization servers can also be manually registered, but the virtual machine information cannot be referenced or displayed.</td>
</tr>
<tr>
<td>To register multiple hosts in a batch.</td>
<td>Use Host Data Collector.</td>
<td>Register multiple hosts in batch by specifying the IP address (range specification and listing addresses are available), and the authentication information of the host on the network. The host’s WWN/iSCSI name information is automatically obtained. To allocate volumes to an FCoE port, you must manually add a WWN. Host Data Collector setup is required.</td>
</tr>
<tr>
<td>To know the usage status of storage resources for the virtualization servers, or the correspondence with the virtual machines.</td>
<td>Use Host Data Collector.</td>
<td>To know the usage status of storage resources for the virtualization servers, or the correspondence with the virtual machines, and when you want to register both the virtualization server and the virtual machine, the virtualization server must use NPIV (N-Port ID Virtualization) HBAs, and be connected with Fibre Channel or FCoE. For virtual machines, install Device Manager agent or use Host Data Collector to specify the IP address (range specification and listing addresses are available), and the authentication information of the host on the network. If the virtualization server is not using NPIV HBAs, either a virtualization server or a virtual machine can be registered per HBA unit (both a virtualization server and a virtual machine cannot be registered in the same WWN).</td>
</tr>
<tr>
<td>To automatically collect host information, or to manage a copy pair by using the replication functionality of the volume.</td>
<td>Use Device Manager agent.</td>
<td>To automatically collect host information, or to manage a copy pair by using the replication functionality of the volume, install Device Manager agent on each host or on the management server of the copy pair. Host information or copy pair information is sent from Device Manager agent. For details about installing the Device Manager agent, see the Hitachi Command Suite Installation and Configuration Guide. To exclude a host from being managed by HCS, uninstall the Device Manager agent, and then remove the host using HCS. To allocate volumes to an FCoE port, you must manually add a WWN.</td>
</tr>
<tr>
<td>To newly install Hitachi Command Suite to an existing environment that was configured</td>
<td>Scan a host.</td>
<td>Use Host Scan when you want to newly install HCS to an existing environment that was configured by using Hitachi Storage Navigator.</td>
</tr>
<tr>
<td>Purpose</td>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>with Hitachi Storage Navigator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To synchronize host information between Device Manager and Compute Systems Manager.</td>
<td>Install Device Manager and Compute Systems Manager on the same server, and obtain host information through Host Data Collector.</td>
<td>If Device Manager and Compute Systems Manager are installed on the same server, information about hosts being managed by both products is synchronized automatically when using Host Data Collector. Therefore, hosts registered in Compute Systems Manager are also registered in Device Manager. However, host deletion is not synchronized. If you want to re-synchronize a Compute Systems Manager host that has been deleted from Device Manager, you must manually re-synchronize the managed hosts.</td>
</tr>
</tbody>
</table>

Tip: To register multiple hosts in a batch operation, use the `ImportHosts` command to import host information such as host name and WWNs, or an iSCSI name, from a CSV file, and then register multiple hosts in a batch operation. Hosts that are registered by using the `ImportHosts` command are managed as manually registered hosts. For details about the `ImportHosts` command, see the *Hitachi Command Suite CLI Reference Guide*.

Related concepts
- [About registering a host](#) on page 61
- [About linking with Compute Systems Manager](#) on page 451

Related tasks
- [Registering hosts by using Host Data Collector](#) on page 64
- [Registering hosts manually by specifying the WWN or iSCSI name](#) on page 65
- [Registering hosts using host scan](#) on page 66

Related references
- [Priority for acquiring the WWN or iSCSI name](#) on page 63

Priority for acquiring the WWN or iSCSI name

If hosts you want to register include a host that has a WWN or an iSCSI name that has already been registered, the host that acquires the WWN or iSCSI name is determined based on the product or application that detects it, and is registered according to the following acquisition priority list.

When hosts are registered by using multiple methods, the WWN or iSCSI name acquisition priority, listed from highest to lowest is:

1. A virtualization server (other than one registered manually) (iSCSI is not supported).
2. A virtualization server that is registered manually (iSCSI is not supported for virtualization servers).
3. A host registered by using Device Manager agent.
4. A normal host or a virtual machine registered either manually or by using Host Data Collector.

When hosts with the same WWN or iSCSI name are registered by using the same method:
- If a host is registered without using the Device Manager agent, the WWN or iSCSI name of the host that was registered first is retained.
- If a host is registered by using the Device Manager agent, the WWN or iSCSI name is registered to the host that was registered last.

Related concepts
- About registering a host on page 61
- Methods for registering hosts on page 61

Registering hosts by using Host Data Collector
Use Host Data Collector to discover and register multiple hosts, virtualization servers, and virtual machines in a single task.

When using Host Data Collector, if Device Manager is linked with Compute Systems Manager, hosts managed by Compute Systems Manager will be registered in Device Manager.

Prerequisites
- Gather the following information:
 - Host OS type
 - Host IP address (IPv4)

Note: To detect multiple hosts at the same time, specify a subnet or a range of 256 or fewer IP addresses, or specify individual IP addresses.

- User name and password for logging on to the host (with Administrator or superuser permissions)

Note: When specifying users other than the root, you need to specify environment settings for when general users are used to collect host information on the host side. For details about how to specify settings, see the Hitachi Command Suite Administrator Guide.

- IP address of Host Data Collector (IPv4 or IPv6) or Host Name
- Gather the following information when registering a virtualization server:
 - IP address of VMware vCenter Server or a virtualization server (IPv4 or IPv6)
Note: To register a virtualization server, you cannot specify a subnet, a range, and multiple IP addresses.

- User name and password of a user (who has the role of system administrator) for logging on to vCenter Server or virtualization servers

Note: If vCenter Server is being used, enter the user name and password for vCenter Server. If vCenter Server is not being used, you need to enter and register user names and passwords of virtualization servers one by one if multiple virtualization servers are being managed.

- Verify that target hosts are connected to the network.
- Specify environment settings for virtualization servers. For details see the *Hitachi Command Suite Administrator Guide*.

Procedure

1. On the **Administration** tab, select **Managed Resources**.
2. On the **Hosts** tab, click **Add Hosts**.
3. In the **Add Hosts** dialog box, click **Discover Hosts**.
 - If you are registering a virtualization server, select **VMware** from **OS Type**.
4. Specify the necessary items, select the **Host Data Collector** to be used, and then submit the task.
 - The task is registered and listed on the **Data Collection Tasks** tab.
5. Verify task status on the **Data Collection Tasks** tab.

Result

Registered hosts can be viewed in the Resources list on the Navigation pane.

Tip: If you want to allocate volumes to an FCoE port, you need to manually add a WWN.

Related concepts

- [Methods for registering hosts](#) on page 61

Registering hosts manually by specifying the WWN or iSCSI name

You can register hosts manually to manage and monitor the hosts by specifying a WWN or iSCSI name.

Prerequisites

- Host name
- OS type
- Unregistered WWN or iSCSI name
Procedure

1. On the Administration tab, select Managed Resources.
2. On the Hosts tab, click Add Hosts.
3. In the Add Hosts dialog box, select Add Hosts Manually.
4. Specify the appropriate information, and then click OK to submit the task.
 If specifying a virtualization server, in OS Type select VMware.

Result

All registered hosts, virtual machines, and virtualization servers are displayed by each host OS type (for example: AIX, HP-UX, Linux, Solaris, Windows, Virtualization Servers, or Others) in the Resources list on the Navigation pane.

Related concepts

- Methods for registering hosts on page 61

Registering hosts using host scan

You can register hosts by using host scan to discover hosts so that they can be managed and monitored.

Scanning for hosts automatically creates hosts with host names that match the WWNs or iSCSI names that are registered in the host group or iSCSI targets on the storage system. For best results, your environment should satisfy the following conditions:

- The name of a host group or iSCSI target should be the same as the actual host, and the WWN or iSCSI name for that host is set for LUN security.
- Only a single host can be related to each host group or iSCSI target.

Prerequisites

- Install LUN Manager on the target storage system.

Procedure

1. On the Administration tab, select Managed Resources.
2. On the Hosts tab, click Host Scan.
3. Confirm that your environment meets the recommended conditions, and then select storage systems on which to scan for hosts.
4. Click Submit.

Result

All registered Data Collection Tasks hosts, virtual machines, and virtualization servers can be viewed by host OS type (for example: AIX, HP-UX, Linux, Solaris, Windows, Virtualization Servers, or Others) in the Resources list on the Navigation pane. If a virtualization server that has an iSCSI name is scanned, it is displayed in host OS type, Others.
Tip: If one host has multiple WWNs or iSCSI names detected, even if it is one host in the actual environment, it might occasionally be registered as multiple hosts by Device Manager. This is because hosts are generated in host groups or iSCSI targets when one host has multiple WWNs or iSCSI names. In this case, the hosts must be merged, meaning merge the WWNs or iSCSI name. Merge the hosts that have been added as multiple hosts in Device Manager into one host, meaning that WWN or iSCSI name information is merged, and the source hosts are deleted automatically.

Related concepts
- Methods for registering hosts on page 61

Related tasks
- Registering hosts using merge hosts on page 67
- Installing a software application on page 46

Related references
- Workflow for detecting hosts on page 69

Registering hosts using merge hosts

You can use merge hosts to combine source and target host information into a single surviving target host that is registered. The maximum number of WWNs and iSCSI name that you can merge at one time is 100.

Prerequisites
- Identify the names of the source and target host. Note that the source host is merged into the target host, then the source host is deleted.
- Ensure the source host has been registered either manually or by host scan.
- Ensure the target host is not a mainframe host, a file server, or a virtualization server (except for manually registered virtualization servers).
- Ensure the target host has at least one registered WWN or iSCSI name.

Procedure
1. On the Administration tab, select Managed Resources.
2. Select the Hosts tab, select the target host row, click More Actions and select Merge Hosts.
3. In the merge hosts window, select the source host, then click Show Plan.
4. Review the target (surviving host) and source (host to be deleted) information.
 - If the target and source host information is correct, click Submit.
 - If the target or source host information must be changed, click Back.
 - To abandon the task, click Cancel.
5. On the **Resources** tab, in the hosts tree, confirm the target host information and the source host removal. You can also confirm this on the **Administration** tab in the **Hosts** tree under **Managed Resources**.

Related concepts

- [Methods for registering hosts](#) on page 61

About changing host settings and information

You can change host settings and update previously registered host information.

Depending on how a host is registered, you change host settings and information by using either of the Refresh Hosts or Edit Hosts options. The Refresh Hosts option updates a host by obtaining information from the Host Data Collector or Device Manager agent. The Edit Hosts option allows you to manually change host settings.

Note: If a Device Manager host is registered on Compute Systems Manager, and if you update host information using Compute Systems Manager, that information is automatically updated in Device Manager.

You can update other host-related information when replacing host HBAs by exchanging the WWN settings in the LUN paths so that the new HBA inherits the WWN settings from the old HBA. Perform this settings exchange by using the Exchange HBAs dialog box when you replace a host HBA due to failure, or by using the Add HBAs dialog box and the Remove HBAs dialog box when you complete a planned HBA replacement as part of scheduled maintenance to prevent performance degradation.

Tip: The settings for the host WWN or iSCSI name are not linked to the settings for the host group or iSCSI target on the storage system side. For example, even if you delete the host WWN or iSCSI name, the WWN or iSCSI name is not deleted from the host group or iSCSI target.

To delete the WWN after replacing HBAs, use the Remove HBAs dialog box. To delete the WWN or iSCSI name from a host group at a time other than when replacing an HBA, use the **ModifyPort** command.

For details about using the **ModifyPort** command, see the *Hitachi Command Suite CLI Reference Guide*.

Related concepts

- [About registering a host](#) on page 61

Related tasks

- [Updating host information registered by using Host Data Collector](#) on page 70
Workflow for detecting hosts

This topic describes how hosts are detected and registered in Device Manager. Read this topic if you are installing Hitachi Command Suite in an environment that was configured by using Storage Navigator.

A host group or iSCSI target is configured on the storage system side, and the storage system is registered in Device Manager. After that, if a host is detected by Device Manager, a host group in the storage system that is selected at the time of detection of the host or a host that has the same name as the name of the iSCSI target is registered in Device Manager. If the same WWN is registered to multiple hosts, or if the same iSCSI name is registered to multiple iSCSI targets, only the WWN or iSCSI name with the same name as the host that is already registered in Device Manager is added to the host. The following shows an example of host detection:

In this diagram, the WWN of 22.22.22.22.22.22.22.22 for host group AAA is added to host AAA, which has the same name as the host group. The WWN of host group BBB is already registered to host AAA, and host BBB cannot be registered in Device Manager. Host CCC, which has the same name as host group CCC, is added to Device Manager, and the WWN of 33.33.33.33.33.33.33.33 for host group CCC is registered to host CCC.

If one host that has multiple WWNs or iSCSI names is detected, even if it is one host in the actual environment, it might occasionally be registered as multiple hosts by Device Manager. This is because hosts are generated in
host groups or iSCSI targets when one host has multiple WWNs or iSCSI names. In this case, the hosts must be merged.

Merge the WWNs and iSCSI names. Merge the hosts that have been added as multiple hosts in Device Manager into one host. WWN or iSCSI name information is merged, and the source hosts are deleted automatically.

Tip: If one host that has multiple WWN or iSCSI names is detected, even if it is one host in the actual environment, it might occasionally be registered as multiple hosts by Device Manager. This is because hosts are generated in host groups or iSCSI targets when one host has multiple WWNs or iSCSI names. In this case, the hosts must be merged. Merge the WWNs or iSCSI names. Merge the hosts that have been added as multiple hosts in Device Manager into one host. WWN or iSCSI name information is merged, and the source hosts are deleted automatically.

Related tasks
- [Registering hosts using host scan](#) on page 66

Updating host information registered by using Host Data Collector

You can update information for registered hosts using Host Data Collector. If Device Manager is linked to Compute Systems Manager, updated host information is synchronized between Device Manager and Compute Systems Manager.

Use Refresh Hosts to update host information registered by using Host Data Collector.

To change authentication information about a registered IP address or user account, edit the IP address or user account by using the Edit Hosts dialog box, and then refresh host information.

To make changes to each item, use the method in the following table:

Table 3-2 Updating host information using Host Data Collector

<table>
<thead>
<tr>
<th>Item</th>
<th>Refresh Hosts</th>
<th>Edit Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>OS Type</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Host IP Address</td>
<td>N</td>
<td>Y¹</td>
</tr>
<tr>
<td>User ID/PW</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Host Data Collector IP Address</td>
<td>N</td>
<td>Y²</td>
</tr>
<tr>
<td>Protocol</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Port Type</td>
<td>Y³</td>
<td>Y³, ⁵</td>
</tr>
<tr>
<td>WWN/iSCSI name</td>
<td>Y³</td>
<td>Y³, ⁴, ⁵</td>
</tr>
<tr>
<td>WWN Nickname</td>
<td>N⁶</td>
<td>N</td>
</tr>
</tbody>
</table>

[1] Information for Host IP Address cannot be changed.
[2] Information for Host Data Collector IP Address cannot be changed.
[3] Information for Port Type cannot be changed.
[4] Information for WWN/iSCSI name cannot be changed.
[5] Information for WWN/iSCSI name cannot be changed.
[6] Information for WWN Nickname cannot be changed.
Legend:
- **Y**: Can be edited or refreshed
- **N**: Cannot be edited or refreshed

Notes:
1. For virtualization servers, you can specify either IPv4 or IPv6.
2. You can specify either IPv4 or IPv6.
3. Clicking Refresh Hosts will discover new or updated WWNs/iSCSI names and their port types. Deleted WWNs/iSCSI names require that you click Edit Hosts and delete the WWNs/iSCSI names that need to be removed.
4. If you want to allocate volumes to a FCoE port, you need to manually add a WWN.
5. You cannot specify this for a virtualization server.
6. To update WWN nicknames that have been specified by using storage system management tools such as Storage Navigator, refresh the storage system information. When several WWN nicknames are assigned to a single HBA, only one of the nicknames is displayed for that HBA.

Procedure

1. On the **Administration** tab, select **Managed Resources**.
2. On the **Hosts** tab, select the host to update, then click either **Refresh Hosts**, or **Edit Hosts**, depending on the items that you want to update.
3. If necessary, specify updated information and click **OK**. The task is registered and added to the task list on the **Data Collection Tasks** tab. If you updated information in the **Edit Hosts** dialog box, after the task has completed successfully, refresh the hosts using **Refresh Hosts**.

Result
The host list is updated.

Related concepts
- [About changing host settings and information](#) on page 68

Changing settings for a manually registered host

You can use Edit Hosts to update host information registered by specifying WWN/iSCSI names, or registered by using the host detection function.

Procedure

1. On the **Administration** tab, select **Managed Resources**.
2. On the **Hosts** tab, select the host to change, and click **Edit Hosts**.
3. Specify the required items, and then click **OK**.

Result
The host information is updated.
Related concepts
• [About changing host settings and information](#) on page 68

Changing settings for a host registered by using Device Manager agent

When the Device Manager agent is used, host information is periodically sent from the Device Manager agent. To update displayed host information, use the Refresh Hosts button. Additionally, after changing settings on the Edit Hosts dialog box, depending on which settings you changed, it may be necessary to use Refresh Hosts to update host information.

To make changes or update host information to each item, see the following table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Refresh Hosts</th>
<th>Edit Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name</td>
<td>N</td>
<td>Y¹</td>
</tr>
<tr>
<td>OS Type</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>IP Address</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>User ID/PW</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Port Type</td>
<td>Y²</td>
<td>Y²</td>
</tr>
<tr>
<td>WWN/iSCSI name</td>
<td>Y²</td>
<td>Y²,3</td>
</tr>
<tr>
<td>WWN Nickname</td>
<td>N⁴</td>
<td>N</td>
</tr>
</tbody>
</table>

Legend:
• Y: Can be edited or refreshed
• N: Cannot be edited or refreshed

Notes:
1. When copy pairs are managed by a host where Device Manager agent is installed, you need to restart the Device Manager agent service after changing the host name. After the Device Manager agent service is restarted, the new host name is applied by updating the storage system.
2. WWNs/iSCSI names and their port types that have been added can be affected by the Refresh Hosts button, but deleted WWNs/iSCSI names and their port types cannot be affected. To delete such WWNs/iSCSI names, the Edit Hosts button needs to be used.
3. If you want to allocate volumes to an FCoE port, you need to manually add a WWN.
4. To update WWN nicknames that have been specified by using other storage system management tools, such as Storage Navigator, refresh the storage system information. When several WWN nicknames are assigned to a single HBA, only one of the nicknames is displayed for that HBA.

Procedure

1. From the Administration tab, select Managed Resources.
2. On the Hosts tab, select the host to update, then click either Refresh Hosts or Edit Hosts depending on the items that you want to update.
3. Modify the settings and click OK.
The task is registered to **Data Collection Tasks** tab. If you changed settings in the **Edit Hosts** dialog box, after the task successfully completes, refresh the hosts using **Refresh Hosts**.

Result
The host list is updated.

Note: After you change a host name, both host names (before and after the change) might display on the Resources tab. In this case, delete the host before making the change. When copy pairs are managed by the host where Device Manager agent is installed, in addition to deleting the host, the storage system also needs to be updated.

Related concepts
- [About changing host settings and information](#) on page 68

About removing hosts and releasing associated resources

When hosts no longer need to be managed, for example due to a reorganization, you can remove the registered hosts and exclude them from HCS management. Related storage resources, such as volumes allocated to the target host and path setting information, can also be removed. However, storage resources that are allocated to other hosts are not released.

When removing storage resources, you can select to:
- Unallocate volumes
- If the volumes that are unallocated when a host is removed are global-active device paired volumes, the following information is released at the same time:
 - Copy pairs
 - Copy groups
 - Configuration definition files (HORCM)
- Delete associated host groups/iSCSI targets
- Release LUSE volumes
- Delete virtual LDEV ID. This applies when managing resources that have virtual IDs set.
- Delete associated volumes
- Shred associated volumes. Format the volumes if shredding is unavailable.

By automatically executing these options as an extension of removing a host, the process is simplified.

Note: When removing storage resources related to a host, verify that there is not any related data remaining on the volumes.
Tip: If you are removing a host that was registered using Device Manager agent, uninstall the Device Manager agent from the host, then remove the host using HCS.

Note: If host information is synchronized between HCS and Compute Systems Manager, the removal of hosts by HCS is not reflected in Compute Systems Manager.

Related concepts
- About unallocating volumes on page 213
- About managing storage resources that have virtual IDs on page 440
- About deleting unallocated volumes on page 145
- About releasing a LUSE volume on page 148

Related tasks
- Removing hosts and releasing associated resources on page 74
- Unallocating global-active device pairs on page 301
- Unallocating individual global-active device volumes on page 302

Removing hosts and releasing associated resources

When you no longer need to manage a host, remove the host and release its associated related storage resources, such as allocated volumes and path settings.

Prerequisites
- Gather the following information:
 - Target host names
 - Target volumes

- Back up the target volumes
- Stop input and output to the target volumes

Procedure
1. On the Administration tab, select Managed Resources and click the Hosts tab.
2. From the lists of hosts, select the host you want to remove and click More Actions > Remove Hosts.
3. In the Remove Hosts dialog box, select one or more options from the following:
 - Remove only selected hosts
 - Unallocate volumes and remove hosts
When you unallocate the volumes that are used by the selected hosts and clean up the volumes, select from the following:

- Delete associated host groups or iSCSI targets
- Delete associated volumes
- Shred associated volumes

⚠️ **Note:** Shred during off hours, such as overnight, so that the shredding process does not adversely affect system performance. To verify the standard required times for shredding, see the *Hitachi Volume Shredder User Guide*.

- Release LUSE volumes
- Delete virtual LDEV ID. This applies when managing resources that have virtual IDs set.

4. Click **Plan Details** to confirm that the information about associated resources is correct.
5. (Optional) Update the task name and provide a description.
6. (Optional) Expand **Schedule** to specify the task schedule.

You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

7. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.
8. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

When the task completes, the host is removed and the selected associated storage resources are released.

Related concepts

- [About removing hosts and releasing associated resources](#) on page 73

Registering file servers

This module describes how to register file servers.

About registering and removing file servers

You can register file servers to be managed by Device Manager so that the volumes of the storage system can be used by the file server.

Device Manager manages file servers based on information sent from Hitachi NAS Platform family, Hitachi NAS Platform F, or Hitachi Data Ingestor.
Note: A system drive is the basic (logical) storage element managed by the Hitachi NAS Platform family, and is equivalent to a storage system volume. Where volumes and system drives do not need to be differentiated, they are generically and collectively referred to as volumes.

When a file server is registered you can:
- Allocate and unallocate volumes
- Examine file server information
- Determine the usage status of storage resources from the file server point of view

From Device Manager, you can activate the file server management software, and change the settings of the file server or reference detailed file server information.

From Device Manager, in addition to the operations above, and depending on the versions of the file server management software that are linked and the file server type, file systems can be created, shares can be added, and file server reports and alerts can be viewed in the dashboard.

If the file server to be registered is Hitachi NAS Platform v10.2.3071 or later, use Device Manager to set the Admin services EVS information (the IP address of Admin services EVS and the supervisor account information) after the registration. This enables file systems to be created on Hitachi NAS Platform EVSs by using Device Manager.

If file servers become unnecessary for reasons such as reorganization, use file server management software to remove the settings for linking to Device Manager, then remove the file servers from the file server list by using HCS. The file servers are excluded from management by HCS, but configuration information, such as the file system and file sharing created on the file server, and paths set during volume allocation, are retained.

For details about the system requirements of the file server, see the Hitachi Command Suite Administrator Guide.

Related concepts
- About managing Hitachi NAS Platform file systems and shares on page 231
- About managing Hitachi NAS Platform F and Hitachi Data Ingestor file systems and shares on page 254

Related tasks
- Registering file servers on page 78
- Changing the name of a file server on page 79
- Changing the Admin services EVS settings of Hitachi NAS Platform on page 80
- Allocating volumes to selected file servers on page 194
Related references

- Environment settings for Hitachi NAS Platform family on page 77
- Workflow for providing NAS Platform file shares on page 234

Environment settings for Hitachi NAS Platform family

To manage the Hitachi NAS Platform using Device Manager, the management server must be in a system configuration in which communication with SMU and Admin services EVS can be performed.

The following diagram illustrates the network relationships between the public management network and its connectivity with the NAS platform over public IP addresses (SMU and Admin services EVS). The storage system connectivity illustrates the use of storage system volumes by the file server, and File services EVS illustrates data services to clients over the public data network. Please see additional connectivity details below.

- Locate the management server on a network that can communicate with SMU. To use the Device Manager GUI to create file systems for firmware version 10.2.3071 or later of Hitachi NAS Platform, set up the system so that it can also communicate with Admin services EVS.
• Make sure that the version of SMU is the same or later as the firmware version of the file server (node).

• Make sure that the versions of the firmware for the file servers (nodes) in a cluster are all the same.

• If Device Manager is managing firmware version 10.2.3071 or later of Hitachi NAS Platform, register the following information for each cluster by using the Device Manager GUI:
 • IP address of Admin services EVS (Public management IP address 1 in the figure).
 The IP address can be checked in the EVS Management page of SMU.
 • User account for the Server Control (SSC).
 A supervisor account is set up as the default user.

Note: If you want to use the Device Manager GUI to check information such as the system drive and storage pool information of the file server, the file system information, or the sharing and exporting information, you need to configure LUN security for the file server from the storage system volume.

Related concepts

• [About registering and removing file servers](#) on page 75

Registering file servers

To register the file server (Hitachi NAS Platform family, Hitachi NAS Platform F, or Hitachi Data Ingestor) as the resource managed by Device Manager, specify the Device Manager information by using the management software on the file server.

If you register Hitachi NAS Platform version 10.2.3071 or later, specify the Admin services EVS information by using Device Manager. This establishes linkage between Device Manager and the Admin services EVS software on the Hitachi NAS Platform.

Prerequisites

• In Device Manager, register the storage system that the file server uses.

• Set up the file server management software:
 ○ System Management Unit (SMU) for Hitachi NAS Platform family
 ○ Hitachi File Services Manager for Hitachi NAS Platform F and Hitachi Data Ingestor

• If the file server to be registered is Hitachi NAS Platform v10.2.3071 or later, gather IP addresses for Admin services EVS (a virtual machine that manages the file server), and the user account for the Server Control (SSC).
Procedure

1. Register Device Manager information by using the file server management software.
 Device Manager users that are specified in the management software of the file server must belong to the **PeerGroup** as a user group.

2. Additionally, if the file server to be registered is Hitachi NAS Platform v10.2.3071 or later, perform the following steps from Device Manager to set the Admin services EVS information:
 a. On the **Administration** tab, select **Managed Resources**.
 b. On the **File Servers** tab, select the Hitachi NAS Platform to be registered, and click **Edit File Server**.
 c. Enter the Admin services EVS information, and then submit the task.
 d. From the **Data Collection Tasks** tab, verify the task status.

Result

File server information will be sent to Device Manager at regular intervals, and can be viewed in the File Servers tree on the Resources tab.

Tip: To remove registered file servers, use file server management software to remove the settings for linking to Device Manager. Then select the file servers to be removed from the HCS file server list in the Administration tab, and click Remove File Servers.

Related concepts

- [About registering and removing file servers](#) on page 75

Related references

- [Priority for acquiring the WWN or iSCSI name](#) on page 63
- [Workflow for providing HNAS F and HDI file shares (HFSM)](#) on page 255

Changing the name of a file server

You can change the file server name or IP address by changing the information registered in Device Manager, followed by changing the information on the file server.

Procedure

1. On the **Administration** tab, select **Managed Resources**.
2. On the **File Servers** tab, select a file server whose name you want to change and click **Edit File Server**.
3. Enter the new name for the file server using the format `file-server-name@IP-address`.
 For Hitachi NAS Platform in a non-cluster configuration, if an IP address is not assigned to the node, enter the file server name in the following format:
• If an IPv4 address is assigned to Admin services EVS: `file-server-name@IP-address-of-Admin-services-EVS`.
• If an IPv4 address is not assigned to Admin services EVS: `file-server-name`.

4. On the file server side, change the file server settings on the target file server.

5. If you are using System Management Unit (SMU) v10.2.3071 or later, perform the following step:
 a. In SMU, perform the operation to synchronize information between the file server and Device Manager.

Note: If the file server name or IP address on the file server side does not match the file server name (`file-server-name@IP-address`) registered in Device Manager, Device Manager cannot correctly recognize which file server information has been sent when the information is sent from a file server, and the same file server might be repeatedly registered under different names. Therefore, file server information might not be updated or an SNMP trap sent from the file server might not be displayed as an alert. If a file server is repeatedly registered, you need to remove the file server registered with the wrong name or an old name from Device Manager.

Related concepts

• [About registering and removing file servers](#) on page 75

Changing the Admin services EVS settings of Hitachi NAS Platform

If you change the Admin services EVS information (IP address, or user account for the Server Control (SSC)) of Hitachi NAS Platform v10.2.3071 or later, you also need to change the Admin services EVS settings registered in Device Manager.

Procedure

1. Change the settings of Admin services EVS on the file server side.
2. On the **Administration** tab of Device Manager, select **Managed Resources**.
3. On the **File Servers** tab, select a file server and click **Edit File Server**.
4. Enter the changed Admin services EVS information, and then submit the task.
5. Verify the task status on the **Data Collection Tasks** tab.

Result

The file server status displayed in the list of file servers on the Administration tab is **Normal**.
Related concepts

- About registering and removing file servers on page 75
Setting up users and access control

This module describes how to control access to managed resources.

- Setting up users and access control
- About user accounts and controlling access to resources
- Creating and managing user accounts
- Controlling access to resources
Setting up users and access control

After users are registered, you can limit the scope of allowed operations for each user by configuring access control settings for users and storage resources.

To set access control you will need to create resource groups and user groups, then assign the resource groups and roles to the user groups.

Related concepts
- About user accounts and controlling access to resources on page 84
- About access control on page 94

About user accounts and controlling access to resources

Hitachi Command Suite provides built-in user accounts and the ability to add additional local user accounts and users from external authentication servers. You grant controlled access to storage resources by adding new users to user groups with assigned resource groups and roles (permissions). Built-in resource groups and user groups exist for administrative convenience.

The following two built-in user accounts are created when Hitachi Command Suite is installed. You will see them when you view the list of user accounts. Additional user accounts will also be listed as you add them.

- The System account (default password: manager) is a fully-privileged administrator account, and is used to manage all HCS functionality, including HCS user accounts, user groups, and resource groups.

- The HaUser account (default password: haset) is the default user account used by Device Manager agents and exclusive account of management software for file servers. The default role for the HaUser account is Peer and the PeerGroup is set for the HaUser account. The HaUser account belongs to PeerGroup as soon as the installation completes.
Log in with the System account to access user management functionality on the Administration tab to create local HCS user accounts. While creating user accounts, you can list available applications (as installed on the management server) and set user permissions for those applications. You must add users to at least one, or more, resource groups to determine the storage they can access. Together, application permissions and resource group/user group membership determine the scope of what each user can do in HCS.

Note the following when managing Virtual Storage Platform G1000:

• Enable user authentication in HCS so that user accounts are authenticated when they log in to CCI and the SVP so that user accounts can be centrally managed.
• SSL communication must be configured between the Device Manager server and the storage system. Also, you might need to add firewall exceptions between the Device Manager server and the storage system. For details on implementing SSL communication and adding firewall exceptions between the Device Manager server and the storage system, see the Hitachi Command Suite Administrator Guide.
• User accounts should be created with user names and passwords compatible with HCS and the Virtual Storage Platform G1000 components.
• If a user account that is used to perform operations by using CCI or the SVP is already registered in Hitachi Device Manager - Storage Navigator, also register that user account in HCS.
• Create an administrator user account for Hitachi Device Manager - Storage Navigator that can be used if HCS is not available.

Note: If HCS authentication of user accounts is disabled when logging into CCI or SVP, you must specify the same user account information and access control to storage resources in both HCS and Hitachi Device Manager - Storage Navigator.

You can also manage user accounts by linking to an external authentication server, such as an LDAP directory server, RADIUS server, or Kerberos server. However, the built-in accounts (System and HaUser) cannot be authenticated on an external authentication server. The HCS user account used to connect to external authentication servers and external authorization servers is managed as a Windows Active Directory (authorization) group. Permissions that are specified for authorized groups are also applied to users who belong to nested groups.

Application permissions

After adding basic user information such as username, password, email, and description, set permissions for available applications, such as:

• Tier management (CLI)
• Replication management
• Performance management
Permissions include View, Execute, Modify, and Admin. These permissions control what the user can do on the related tabs, and possibly elsewhere.

Users can assist in user management tasks by selecting the admin permission for the User Management application. The user will be able to assist in:
- Specifying user settings
- Creating user groups for Device Manager and Tiered Storage Manager
- Assigning resources and roles to user groups
- Reporting user, and user group information in CSV format
- Specifying security settings (such as locking an account)

Resource groups and User groups

The resource group All Resources is a built-in group (created by default) and contains the built-in user groups called AdminGroup, ModifyGroup, PeerGroup, and ViewGroup. Adding a user to ViewGroup would allow a user to see all registered storage systems and related underlying detail such as parity groups. Putting the user in ModifyGroup enables task related buttons and tasks listed under General Tasks, allowing the user to work with resources. Essentially, as a member of an All Resources group, you have access to the Device Manager GUI and Tiered Storage Manager GUI elements.

Additionally, each storage system has a resource group named Default ResourceGroup. If you have three registered storage systems you would see three of these groups in addition to All Resources listed. This group is used to provide Admin, Modify, or View permissions (roles) to one or more users in a user-defined user group so they have access to the specific resources of the storage system. In other words, instead of placing a user in the All Resources group, you can place them in one or more storage system resource groups and narrow the scope of what they can view or manage. To do this, you must create a named user-defined group and edit the resource group to add the user-defined group and one or more users, whose permissions (roles) can be set independently as you add them. Additionally, if the default resource group is for a Virtual Storage Platform G1000, you can select Custom roles which are more specific, such as roles for provisioning, or copy pair management and tasks. Multiple roles can be combined.

For very specific control over access to resources, consider creating user-defined resource groups. You can identify specific parity groups and LDEVs that members of your user-defined user group can access. As with default resource groups, for a Virtual Storage Platform G1000, you can select Custom roles.

Tip: For details about the required permissions for executing each command of the Tiered Storage Manager CLI, see the *Hitachi Command Suite Tiered Storage Manager CLI Reference Guide.*
Creating and managing user accounts

Create user accounts and assign permissions.

Creating a user account

All users not allowed to log in with the System account require a user account for access to HCS.

A user account consists of general user profile information (User ID, Password, Full Name, E-mail, and Description).

Procedure

1. On the Administration tab, click Users and Permissions. This will launch a user management window.
2. Click Users to display the current user list.
3. Click Add User and specify user profile information.
4. Click OK.

Result

The user list is re-displayed and will include the new user.

Related tasks

- Editing the profile for a user account on page 88
- Deleting user accounts on page 94

Related references

- User ID and password policies on page 87

User ID and password policies

User IDs and passwords must adhere to specific requirements.

The User ID and password requirements for HCS, the SVP, and Command Control Interface (CCI) vary.

When using HCS as an authentication server for Virtual Storage Platform G1000, User IDs and passwords must be valid for both HCS and the SVP, and for HCS and CCI.
<table>
<thead>
<tr>
<th>Component</th>
<th>Item</th>
<th>Length</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS</td>
<td>User ID</td>
<td>1-256</td>
<td>A-Z, a-z, 0-9 ! # $ % & ' () * + - . = @ \ ^ _</td>
</tr>
<tr>
<td></td>
<td>Password</td>
<td>1-256</td>
<td>Same as above</td>
</tr>
<tr>
<td>SVP</td>
<td>User ID</td>
<td>1-128</td>
<td>Alphanumeric (ASCII code) characters ! # $ % & ' - . @ ^ _</td>
</tr>
<tr>
<td></td>
<td>Password</td>
<td>6-127</td>
<td>Alphanumeric (ASCII code) characters ! # $ % & ' () * + - . = @ \ ^ _</td>
</tr>
<tr>
<td>CCI</td>
<td>User ID</td>
<td>1-63</td>
<td>Alphanumeric (ASCII code) characters - . @ _</td>
</tr>
<tr>
<td></td>
<td>Password</td>
<td>6-63</td>
<td>Alphanumeric (ASCII code) characters - . @ _</td>
</tr>
</tbody>
</table>

Note: When using a Windows computer for CCI, you can also specify a backslash (\) for both the User ID and password.

If using external authentication servers such as LDAP (and others), note the following:
- User IDs and passwords must be valid for the external authentication server and Hitachi Command Suite products.

A password policy can be configured from the Administration tab to enforce stronger passwords. If using external authentication, the password enforcement must be compatible.

Related concepts
- [About user accounts and controlling access to resources](#)

Related tasks
- [Creating a user account](#)
- [Changing the password for a user account](#)
- [Changing your own password](#)
- [Configuring external authentication for users](#)
- [Configuring external authentication for groups](#)

Editing the profile for a user account
Modify the name, email address, and description for a user account.

Procedure
1. On the Administration tab, click **Users and Permissions**.
This will launch a user management window.

2. Click Users, select the target user by clicking the User-ID link, and click Edit Profile.

3. Edit the profile information for the user, and then click OK. The user profile is displayed.

4. Confirm the updated user profile information.

Related tasks
- Changing permissions for a user account on page 90
- Editing your own user profile on page 89

Editing your own user profile
As your user attributes change, you will need to update your user profile.

Procedure
1. On the Administration tab, click User Profile. Your user information is displayed.

2. Click Edit Profile.

3. Edit the profile information and click OK.

4. Confirm that the updated user profile information appears in the Users area.

Related tasks
- Changing your own password on page 90

Changing the password for a user account
As user passwords expire or are compromised, they can be changed.

Procedure
1. On the Administration tab, click Users and Permissions. This will launch a user management window.

2. Click Users, select the target user by clicking the User-ID link, and click Change Password.

3. Enter the new password and verify it.

4. Click OK.

5. Confirm that the user account can log in with the new password.

Related tasks
- Changing your own password on page 90

Related references
- User ID and password policies on page 87
Changing your own password

As your password expires or is compromised, it will need to be changed.

Procedure

1. On the Administration tab, click User Profile. Your information is displayed.
2. Click Change Password.
3. Type the new password and verify it.
4. Click OK.
5. Log in with your new password.

Result

Your password is changed.

Related concepts

• About user accounts and controlling access to resources on page 84

Related tasks

• Changing the password for a user account on page 89

Related references

• User ID and password policies on page 87

Changing permissions for a user account

To grant a user new permissions or remove existing permissions, change permission settings in the user account.

Tip: For a user of Device Manager or Tiered Storage Manager (GUI), specify a role for the user group which is assigned to the user, instead of granting user permissions.

Procedure

1. On the Administration tab, click Users and Permissions. This will launch a user management window.
2. Click Users, select the target user by clicking the User-ID link, and click Change Permission.
3. Edit the permissions and click OK. The user account is re-displayed, including granted permission.
4. Verify the correct user permissions are selected.

Result

The user permissions are changed.
Related references

- [Required roles and resource groups by function](#) on page 108

Changing the lock status of user accounts

A user account can be locked or unlocked by an administrator.

Procedure

1. On the **Administration** tab, select **Users and Permissions**. This will launch a user management window.
2. Click **Users**, select the check box for the user whose lock status you want to change.
3. Click **Lock Users** or **Unlock Users**. A verification dialog box displays.
4. Click **Ok** to lock or unlock the account, or click **Cancel**.
5. Verify that the user account has been locked (a lock icon displays in the user list), or that the previously locked user can now log in.

Related concepts

- [About user accounts and controlling access to resources](#) on page 84

Related tasks

- [Changing the password for a user account](#) on page 89

Configuring external authentication for users

External authentication systems can be used to authenticate user logins.

External authentication systems, such as LDAP (for example, Active Directory), RADIUS, or Kerberos may be used to authenticate HCS users as they log in. You can re-configure existing accounts, or create new accounts to use external authentication.

Prerequisites

- The HCS server must be linked to an external authentication server. See the *Hitachi Command Suite Administrator Guide*.
- The HCS server must be configured to support user authentication, which activates the Change Auth button in the GUI, and which presents authentication options such as Internal for a local account, or LDAP for external authentication.
- The HCS user ID must exist on the external authentication server. It is recommended that user ID information be acquired from the external authentication server administrator before creating accounts.

Procedure

1. From the **Administration** tab, select **Users and Permissions**.
2. Select **Users** folder, then select one or more users (using the checkbox) whose authentication method you want to change, or click **Add User** to create a new account.

Note: When creating a new account, only the **User ID** is required for external authentication, and must match a user ID on the external authentication server. For a local (internal) account, a **User ID** and **Password** are both required. When external authentication is available, new user accounts created without a password value are automatically configured to use external authentication (for example, LDAP is selected for you). Fill in the desired fields, and click **OK** to create the user account.

3. If you have selected existing users, click **Change Auth**. A dialog box is displayed. From the drop down list, select the desired authentication method (for example, LDAP) and click **OK**. The user list will be re-displayed.

4. Review the **Authentication** column to verify the authentication method.

Result

On the next login attempt by each user, the users login credentials (user ID and password) will be validated using the external authentication server.

Tip: Set permissions or roles so that the registered user can perform necessary operations using HCS products. Also consider adding user accounts to user groups with assigned roles for controlled access to resource groups.

Related concepts

- [About user accounts and controlling access to resources](#) on page 84

Related tasks

- [Configuring external authentication for groups](#) on page 92

Related references

- [User ID and password policies](#) on page 87

Configuring external authentication for groups

External authentication systems can be used to authenticate user groups.

External authentication systems, such as LDAP (for example, Active Directory), RADIUS, or Kerberos may be used to authenticate HCS user group members as they log in. You can configure one or more user groups, from one or more external authentication servers.

When linking with an external authentication server, if using together with Active Directory as an external authorization server, user permissions can be managed by using the Active Directory groups (authorization groups)
registered on the external authorization server. In this case, user permissions are specified for each group.

Prerequisites
- The HCS server must be linked to an external authentication (authorization) server. See the *Hitachi Command Suite Administrator Guide*.
- The HCS server must be configured to support group authentication, which activates the Groups folder in the GUI.
- The HCS user group must exist on the external authentication (authorization) server. It is recommended that domain and group information, as required below, be acquired from the external authentication server administrator.

Procedure

1. From the Administration tab, select Users and Permissions.
2. Click the Groups folder to display the Domain List. This is a list of external authentication servers listed by domain name, and host name or IP address. If the Groups folder is not displayed, see the pre-requisites above.
3. Select the desired Domain Name to display the Group List, which may be empty ('No Groups' is displayed). Click Add Groups.
4. Enter the Distinguished Name for the group. Use Check DN to verify a correct DN entry. Click Ok to save your group and re-display the Group List. Note that the Group Name is derived from the entered DN. To specify multiple groups, note that:
 - You can add multiple DNs at the same time using the "+" button
 - If multiple DNs are listed, you can remove an entry with the "-" button
 - Reset clears all DN entries
5. From the Group List, click the Group Name link, then click Change Permission and set the HCS permissions for the group (repeat this for each new group).
6. Your groups will now be visible from the Administration tab, User Groups. You can affiliate the groups with resource groups and roles, just like HCS user groups. If you delete external authentication groups from Users and Permissions at a later time, the groups are also removed from the User Groups list.

Result

On the next login attempt by each group member, the users login credentials (User ID and Password) will be validated using the external authentication (authorization) server.

Tip: To delete registered authorization groups, select the check boxes of the groups to be deleted, and then click Delete Groups.
Deleting user accounts

If user accounts are no longer needed for accessing HCS, for example if users leave the organization, you can delete the user accounts.

Procedure

1. On the Administration tab, select Users and Permissions.
2. Select Users in the navigation pane, and then select the users to delete.
3. Click Delete Users.
4. Click OK.

Result

The user accounts you deleted no longer appear in the list of user accounts.

Controlling access to resources

This module describes how to control access to resources.

About access control

Within a managed SAN environment, user accounts are created, added to user groups, and the user groups affiliated with resource groups and assigned roles to provide controlled access to functionality available in Device Manager and Tiered Storage Manager (GUI).

- A user group consists of local user accounts, or accounts from external authentication systems
- A resource group consists of storage system resources (storage systems, parity groups, DP pools, LDEV IDs, and storage ports)
- Assigned roles for resource groups provide either full, partial, or read-only access to resource group resources

This creates an access control policy that allows secure data handling in multi-tenant environments and supports more efficient and secure operations. An access control policy can be used for:

- Data center hosting services
- Management of departments in an organization
• Management of locations in an organization

A user group is a group of users who can access the same resources with the same user permissions. Externally authenticated groups can also be used as user groups. When you assign resource groups and roles (user permissions, such as Admin, Modify, View or Custom) to a user group, resources are consistently controlled for the users in that group.

When the storage system is Virtual Storage Platform G1000, you can use custom roles to specify one or more roles and user permissions at a more detailed, granular level. For example, you can allow:
• Provisioning operations
• Remote copy operations
• System resource operations
• Storage encryption key and authentication management
• Audit log management

Resource groups can be created in this configuration only when the storage system is Virtual Storage Platform G1000, Virtual Storage Platform, or Unified Storage VM.

The following figure illustrates user groups and their permissions (standard Admin, Modify and View roles) for accessing resources. The use of custom roles is not shown here, but is illustrated in the user group topics. Custom roles provide more granular permissions to specific functionality.

For Virtual Storage Platform G1000, Virtual Storage Platform, or Unified Storage VM systems, physical configurations such as parity groups, and logical configurations such as LDEV IDs, are used to create resource groups. After resource groups are created, they can then be assigned to user groups.
Related references

- Access control examples on page 96

Access control examples

The following examples show how resource groups can control access in a Virtual Storage Platform G1000, Virtual Storage Platform, or Unified Storage VM system. One method for dividing resources would be by separating resources based on company location. For example, if you create resource groups based on location, the administrators in each location are limited to using only the resources that have been assigned to them, and are restricted from accessing the resources of other locations.

It is also possible to share physical resources (such as parity groups or storage ports) among departments, and divide only logical resources (such as DP pools, LDEV IDs, or host group numbers) by department. For example, you can assign resource groups that contain shared physical resources to all departments, and then assign individual resource groups that contain specific logical resources to the appropriate departments. This allows department
administrators to use only the resources assigned to them, while still allowing for effective sharing of physical resources.

Related concepts
- About resource groups on page 97
- About user groups on page 102
- About access control on page 94

About resource groups
Resources can be grouped by system resource types that include storage system, parity groups, DP pools, LDEV IDs, and storage ports.

Note: When DP pools are registered to resource groups, related DP pool volumes and their LDEV IDs are also registered.

There are several types of resource groups:
- All Resources is a resource group that is created during management server installation and includes all resources managed by HCS. For
example, a user who is a member of one of the built-in user groups for All Resources has access to all storage systems.

- Default ResourceGroup is the name for default resource groups that are created as storage systems are discovered and registered. A user who is a member of a user group in a default resource group has access to all of the storage system resources.

- Resource pool is another type of resource group. A resource pool is a resource group to which resources of a virtual storage machine in a Virtual Storage Platform G1000 belong, when the resources have not been added to any individual resource group. There are two types of resource pools. There are resource pools on the default virtual storage machine, and resource pools that are automatically created on user-defined virtual storage machines. You can check the resource pools on user-defined virtual storage machines from the resource group list.

- User-defined resource groups defining more specific storage access can be created for the Virtual Storage Platform G1000, Virtual Storage Platform, and Unified Storage VM depending on the operating environment. Resources can be grouped by parity groups, DP pools, LDEV IDs, or storage ports. Resource group definitions in Device Manager are applied to the storage system when using the Virtual Storage Platform G1000. However, these resource group definitions are not applied to other storage systems.

Resource groups, which are user-defined, can be set for the Virtual Storage Platform, Virtual Storage Platform G1000, or Unified Storage VM. Only default resource groups are created for other storage systems. Each resource is automatically registered in the All Resources and in Default resource groups created for its storage system (this group cannot be deleted). If a volume that is part of a LUSE volume is registered in a resource group, other volumes in that LUSE volume are also registered in the same resource group. For the Virtual Storage Platform G1000, when you register a part of a parity group that is part of a concatenated parity group to a resource group, other parity groups that are a part of the concatenated parity group will also be registered in the same resource group automatically. If the resource is in a Virtual Storage Platform, Virtual Storage Platform G1000, or Unified Storage VM system, you can register it in only one user-defined resource group.

Related concepts

- [About user groups](#) on page 102
- [About virtual storage machines](#) on page 264

Related tasks

- [Creating resource groups](#) on page 100
- [Editing a resource group](#) on page 100
- [Assigning resource groups and roles to a user group](#) on page 129
Related references

- Prerequisites for creating resource groups on page 99
- Access control examples on page 96

Prerequisites for creating resource groups

Resources can be grouped by system resource types that include storage systems, parity groups, DP pools, LDEV IDs, and storage ports.

The following list identifies the conditions for creating a user-defined user group for the Virtual Storage Platform, Virtual Storage Platform G1000, or Unified Storage VM.

All of the following resources can be set to create a user-defined group for a Virtual Storage Platform, Virtual Storage Platform G1000, or Unified Storage VM.

- Parity Groups: Includes parity groups and volumes in external storage systems. Users with Modify, Storage Administrator (Provisioning), or higher roles for parity groups, or the LDEV ID of a DP pool volume, and an unused LDEV ID is assigned to the user, the user can create a volume. For the Virtual Storage Platform G1000, when you register a part of a parity group that is part of a concatenated parity group to a resource group, other parity groups that are a part of the concatenated parity group will also be registered in the same resource group automatically.

- DP Pools: Includes DP pools consisting of DP pool volumes with LDEV IDs.

- LDEV IDs: Includes parity groups and volumes in external storage systems. Non-existent IDs can also be specified. Users with Modify, Storage Administrator (Provisioning), or higher roles for parity groups or DP pools and assigned an unused volume ID, can create a volume.

- Storage Ports: Users with Modify, Storage Administrator (Provisioning), or higher roles for ports and assigned an unused Host Group Number can create a host group that has that host group number.

- Host Group Number: Non-existent numbers can also be specified. Users with Modify, Storage Administrator (Provisioning), or higher roles for ports and assigned an unused Host Group Number can create a host group that has that host group number.

Related concepts

- About resource groups on page 97

Related tasks

- Creating resource groups on page 100
Creating resource groups

User created resource groups can be used to group system resource types including storage systems, parity groups, DP pools, LDEV IDs, and storage ports.

Resource groups, which are user defined, can be created for the Virtual Storage Platform, Virtual Storage Platform G1000, or Unified Storage VM.

Procedure

1. On the **Administration** tab, in the **Administration** pane, select **Resource Groups**.
2. Click **Create Resource Group**.
3. Enter a name and description, and select the storage system providing the resources.
4. Using the tabs, specify the parity groups, DP pools, LDEVs, ports, or host groups (or a mix of resources) for the resource group.
5. Click **Submit** to register this as a task.
6. You can check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

The new resource group is displayed, and can be assigned to an existing user group using the Edit User Group button. You can also assign resource groups when creating new user groups with Create User Group.

Related tasks

- [Editing a resource group](#) on page 100
- [Assigning resource groups and roles to a user group](#) on page 129
- [Deleting resource groups](#) on page 101

Related references

- [Access control examples](#) on page 96
- [Prerequisites for creating resource groups](#) on page 99

Editing a resource group

You can edit storage system resources in an existing resource group.

Information about resource groups can be modified to reflect changing access control requirements.

Procedure

1. On the **Administration** tab, in the **Administration** pane, select **Resource Groups**.
2. To edit a resource group, do one of the following:
• From the Resource Groups pane, select the resource group, and click Edit Resource Group.
• Click the resource group link, click Actions and select Edit Resource Group.
3. You can modify the resource group name and description, but not the storage system.
4. Modify the parity groups, DP pools, LDEVs, ports, or host groups to reflect your access control requirements.

Note: To add or delete DP pool volumes, you must add or delete DP pools.

5. Click Submit to register this as a task.
6. You can check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result
Depending on how you initiated your edit (see step 2), the resource group is displayed and you can confirm your changes, or you will be in the Resource Groups pane and can click the resource group link to confirm your changes.

Related tasks
• Creating resource groups on page 100
• Assigning resource groups and roles to a user group on page 129

Related references
• Access control examples on page 96

Deleting resource groups
If resource groups are no longer needed, you can delete the resource groups.

Procedure
1. On the Administration tab, select Resource Groups.
2. Select the resource groups to delete.
 The storage system default resource groups, All Resources, and resource pools cannot be deleted.
3. Click Delete Resource Groups.
4. Click Submit.

Result
The resource groups you deleted no longer appear in the list of resource groups.
About user groups

A user group consists of one or more users having the same permissions (role) for the same resources. An external authentication group can also be used as a user group. There are also built-in resource and user groups for administrative convenience.

For a user group, one or more resource groups are added, and a role assigned for each resource group. The types of roles are:

- Admin
- Modify
- View
- Custom

User group members will be able to work with each resource group according to the assigned role (permissions) for the resource group. For example, a user group member with view access to a resource group can monitor, but not change the resource. Also note the following:

- A user can belong to multiple user groups, each with assigned resource groups and roles
- A resource group can be registered to multiple user groups

If hosts and volumes are managed as logical groups that correspond to businesses or organizations and the logical groups are registered as private logical groups, only users who belong to the same user group will be able to use the logical groups.

The default (built-in) user groups assigned to the All Resources resource group (also built-in) are:

- AdminGroup (role: Admin and the permission for creating resource groups)
- ModifyGroup (role: Modify)
- ViewGroup (role: View)
- PeerGroup (role: Peer. This user group cannot be assigned to a resource group)

Note: If Hitachi Compute Systems Manager (HCSM) v8.1 or later is installed on the HCS management server with Device Manager, the following user groups are created:

- HCSM_AdminGroup
- HCSM_ModifyGroup
- HCSM_ViewGroup

Two special case user group assignments exist:

- The built-in account (user ID: HaUser) used by Device Manager agents and file servers is set to the PeerGroup immediately after the installation is completed, but can be set to another group later. To assign the Peer role to a user, register the user in PeerGroup.
Authorized groups that have been registered to Hitachi Command Suite products can be used as user groups. Roles assigned to authorized groups are also applied to users who belong to nested groups.

For a Virtual Storage Platform G1000, Virtual Storage Platform, or Unified Storage VM storage system, if different roles are set as follows, the role set for each resource group is applied to all resource groups within the same storage system.
- When multiple resource groups in the same storage system are assigned to one user group, and a different role has been set for each resource group.
- When a user belongs to multiple user groups, and a different role has been set for the resource groups in the same storage system.

If the storage system is not a Virtual Storage Platform G1000, Virtual Storage Platform, or Unified Storage VM, the previous scenario does not apply. For example, in the following figure, User A and User B can access each resource group (RG) with the following roles, respectively.

User A can access RG1, RG2, and RG3 with the Admin, Audit Log Administrator (View & Modify) and Security Administrator (View Only) roles. User B can access RG3 with the Security Administrator (View & Modify) role, and access RG4 with the View role.

Some special cases apply:
- If a user has the Storage Administrator (Provisioning), Modify, or higher roles for parity groups or the LDEV ID of a DP pool volume, and an unused LDEV ID is assigned to this user, they can create a volume.
- If a user has the Storage Administrator (Provisioning), Modify, or higher roles for ports, and an unused Host Group ID is assigned to this user, they can allocate new volumes by using that Host Group ID.
If the LDEV ID of a DP volume is assigned to a user, this user can view the DP pool to which the DP volume belongs and the DP pool volumes that compose the DP pool. If the LDEV ID of a DP pool volume is assigned to this user, they can view the pool to which the DP pool volume belongs.

If a parity group is assigned to a user, this user can view all volumes that belong to the parity group from a list of volumes that appears when displaying the parity group information. If a parity group is not assigned to a user and only the LDEV IDs of the volumes belonging to the parity group are assigned to this user, they cannot view that parity group.

Note: The roles above determine the operation permissions of Device Manager and the Tiered Storage Manager GUI. For users of the Tiered Storage Manager CLI, operating permissions are granted by assigning the desired roles of All Resources and Device Manager to the user groups to which the users belong, and then setting the Tiered Storage Manager permissions required to execute commands for each user. For details about the permissions required to execute each command, see the *Hitachi Command Suite Tiered Storage Manager CLI Reference Guide*.

Related concepts
- [About access control](#) on page 94

Related tasks
- [Creating user groups](#) on page 127

User group roles

In Device Manager and Tiered Storage Manager (GUI), permissions are granted by assigning resource groups and roles to users in a user group. For other HCS products, permissions are granted by setting permissions for each user. For example, this method can be used for granting permissions for the Device Manager GUI and CLI operations and for the Tiered Storage Manager GUI. For users of the Tiered Storage Manager CLI, permissions are granted by assigning the desired roles of All Resources and Device Manager to the user groups to which the users belong, and then setting the Tiered Storage Manager permissions required to execute commands for each user.

The table below describes roles and the tasks that can be performed when those roles are assigned.

By specifying roles, resources that belong to a resource group for which a user has permission to reference or operate on are displayed. The user can perform operations or reference information for the displayed resources.

Roles can be set for an external authentication group, just like for other user groups, when the external authentication group is used as a user group. By default, the View role for All Resources is set.
Table 4-2 User permissions by role

<table>
<thead>
<tr>
<th>Role</th>
<th>Device Manager Tasks</th>
<th>Tiered Storage Manager Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin</td>
<td>The user can register resources to be managed, change settings, and view information.</td>
<td>The user can create, edit, and delete tiers, perform operations from the Mobility tab, and perform migration tasks.</td>
</tr>
<tr>
<td></td>
<td>If the user is assigned to All Resources, the user can manage resource groups.</td>
<td></td>
</tr>
<tr>
<td>Modify</td>
<td>The user can register resources to be managed, change settings, and view information.</td>
<td>The user can create, edit, and delete tiers, perform operations from the Mobility tab, and perform migration tasks.</td>
</tr>
<tr>
<td>View</td>
<td>The user can view (reference) managed resources.</td>
<td>The user can view (reference) information about tiers, information in the Mobility tab, and list migration tasks.</td>
</tr>
<tr>
<td>Peer</td>
<td>This role applies only to Device Manager agents and file servers and cannot be assigned to resource groups and cannot be used to log in to HCS products. The Peer role cannot be assigned in combination with any permissions other than the User Management permissions.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Custom</td>
<td>For VSP G1000, more granular roles are available and are referred to as custom roles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Admin, Modify, and View roles are broad in scope, while custom roles are more specific. When selecting permissions for a user group associated with a default user group or user-defined resource group, multiple custom roles can be selected in combination to determine user capabilities. For users assigned to an All Resources built-in group, custom roles are not available as the built-in groups grant Admin, Modify, or View permissions only.</td>
<td></td>
</tr>
</tbody>
</table>

Related references
- [Custom roles](#) on page 105
- [Required roles and resource groups by function](#) on page 108

Custom roles

Custom roles provide granular permissions for performing general HCS tasks, as well as additional tasks specific to Hitachi Virtual Storage Platform G1000. The custom roles available include Storage, Security, Audit Log, and Support roles.

The table below describes additional VSP G1000 tasks (functions) and the required custom roles when selecting System GUI from menus or application panes to open Hitachi Device Manager - Storage Navigator.

Note that to use custom roles, they must be assigned to resource groups with users. The following custom roles can be assigned to both the VSP G1000 default resource group for broad access to storage resources, and to user-defined resource groups for specific access to storage resources:
- Storage Administrator (Provisioning)
- Storage Administrator (Performance Management)
• Storage Administrator (Local Copy)
• Storage Administrator (Remote Copy)

Storage, security, and audit log custom roles not in the list above are generally for tasks concerning the storage system as a whole, such as security and auditing. These roles are assigned to the VSP G1000 default resource group only.

Note: Custom roles cannot be assigned to users in the All Resources built-in resource groups as these groups permit View, Modify, or Admin permissions only.

Table 4-3 Custom roles

<table>
<thead>
<tr>
<th>Custom role (permission)</th>
<th>Functions</th>
</tr>
</thead>
</table>
| Storage Administrator (Provisioning)¹ | Allows provisioning related operations:
• Configuring caches
• Configuring LDEVs, pools, and virtual volumes
• Formatting and shredding LDEVs
• Configuring external volumes
• Creating and deleting quorum disks used in a global-active device environment
• Configuring alias volumes for Compatible PAV.
• Configuring Dynamic Provisioning
• Creating and deleting global-active device pairs
• Configuring host groups, paths, and WWNs
• Configuring Volume Migration except splitting Volume Migration pairs when using CCI
• Configuring access attributes for LDEVs
• Configuring LUN security |
| Storage Administrator (Performance Management)¹ | Allows performance monitoring:
• Configuring monitoring
• Starting and stopping monitoring |
| Storage Administrator (Local Copy)¹ | Allows pair operations for local copy:
• Performing pair operations for local copy
• Configuring environmental settings for local copy
• Splitting Volume Migration pairs when using CCI |
| Storage Administrator (Remote Copy)¹ | Allows remote copy operations:
• Remote copy operations in general
• Managing global-active device pairs (except for creation and deletion) |
| Storage Administrator (Initial Configuration)¹ | Allows initial configuration of storage systems:
• Configuring settings for storage systems
• Configuring settings for SNMP
• Configuring settings for e-mail notification
• Configuring settings for license keys
• Viewing, deleting, and downloading storage configuration reports
• Acquiring all the information about the storage system and refreshing |
| Storage Administrator (System Resource Management)¹ | Allows configuring various storage system resources:
• Configuring settings for CLPR |
<table>
<thead>
<tr>
<th>Custom role (permission)</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Configuring settings for MP Blade
• Deleting tasks and releasing exclusive locks of resources
• Completing SIMs
• Configuring attributes for ports
• Configuring LUN security
• Configuring Server Priority Manager
• Configuring tiering policies</td>
</tr>
<tr>
<td>Security Administrator (View & Modify)</td>
<td>For global-active device:
• Setting the reserved attribute for a volume to be used in a global-active device pair
With the exception of user management, allows management of encryption keys and authentication for storage systems:
• Creating an encryption key, configuring encryption
• Viewing and switching the location at which to create an encryption key
• Backing up and restoring an encryption key
• Deleting an encryption key that is backed up on the key management server
• Viewing and changing the password policies for backing up an encryption key on the management client
• Configuring the certificate used for SSL communication on the management client<sup>2</sup>,
• Configuring the Fibre Channel authentication (FC-SP)</td>
</tr>
<tr>
<td>Security Administrator (View Only)</td>
<td>Allows viewing of storage system encryption keys and authentication settings:
• Viewing information about encryption settings
• Viewing information about encryption keys on the key management server</td>
</tr>
<tr>
<td>Audit Log Administrator (View & Modify)</td>
<td>Allows management of storage system audit logs:
• Configuring audit log settings
• Downloading audit logs</td>
</tr>
<tr>
<td>Audit Log Administrator (View Only)</td>
<td>Allows viewing of audit log settings for storage systems and downloading of audit logs:
• Viewing storage audit log settings
• Downloading audit logs</td>
</tr>
<tr>
<td>Support Personnel<sup>3,4</sup></td>
<td>Allows configuration from the SVP by service representatives:
• Downloading dump files using the FD Dump tool</td>
</tr>
</tbody>
</table>

Notes:
1. Custom roles also apply to general tasks performed on the Virtual Storage Platform G1000, such as:
 • Refreshing storage system information
 • Registering storage systems and hosts
 • Managing tasks, logical groups, and storage tiers
 • Displaying information
 • Downloading components
2. When a user account for logging in to the SVP or Command Control Interface (CCI) is authenticated by HCS, if the user account created in HCS is assigned the Security Administrator (View & Modify) role, that user account can be used to open the Tool Panel and
3. When a user account for logging in to the SVP or Command Control Interface (CCI) is authenticated by HCS, if the user account created in HCS is assigned the Support Personnel role, that user account be used to log in to the SVP and perform tasks.

4. When a user account for logging in to the SVP or Command Control Interface (CCI) is authenticated by HCS, if the user account created in HCS is assigned the Support Personnel role, that user account be used to open the Tool Panel and download dump files. For details about this procedure, see the Hitachi Command Suite Administrator Guide.

Required roles and resource groups by function

The following tables show the resource groups and roles that are required to perform each function of Device Manager or Tiered Storage Manager.

The first table below lists HCS functions, and the required resource groups and roles to perform the function.

The second table lists additional HCS functions for the VSP G1000, and the required custom roles or roles to perform the functions.

<table>
<thead>
<tr>
<th>Custom role (permission)</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure the certificate. For details about this procedure, see the Hitachi Command Suite Administrator Guide.</td>
<td></td>
</tr>
</tbody>
</table>

Note: This topic describes only the operations that can be performed from the GUI. For the operations that can be performed by using CLI, see the manuals Hitachi Command Suite CLI Reference Guide and Hitachi Command Suite Tiered Storage Manager CLI Reference Guide.

The following headings are used to group related or similar functions in the table below:
- Access Control
- Downloads
- Link and Launch
- Storage Systems
- Hosts
- LUN Paths, HBAs, Host Modes
- Data Collection Tasks
- HCS Tasks
- System Tasks
- Alerts
- Search & Reports (CSV)
- Volumes

Related concepts
- [About access control](page 94)

Related references
- [User group roles](page 104)
- [Required roles and resource groups by function](page 108)
- Volumes - global-active device pairs
- External Storage Systems
- Pools/Tiers
- File Servers
- File Servers - HNAS
- File Servers - HDI and HNAS F
- Replication
- Virtual ID
- Mobility (migration)
- Resources of virtual storage machines
- Analytics

Note: For custom roles, a hyphen (-) indicates that the task (function) cannot be performed with a custom role.

<table>
<thead>
<tr>
<th>Function</th>
<th>Resource Group</th>
<th>Required Roles</th>
<th>Required Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Admin, Modify, View</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td>Access Control (Administration tab, resource groups) (Resources tab, logical groups)</td>
<td>All Resources</td>
<td>Admin</td>
<td>-</td>
</tr>
<tr>
<td>Assign resources and roles to user groups</td>
<td>All Resources</td>
<td>Admin You must have User Management Admin permission.</td>
<td>-</td>
</tr>
<tr>
<td>Create, delete, or edit resource groups</td>
<td>All Resources</td>
<td>Admin</td>
<td>-</td>
</tr>
<tr>
<td>Create, edit, or delete public logical group</td>
<td>Any</td>
<td>Admin or Modify</td>
<td>One of the following: Storage Administrator (Provisioning) Storage Administrator (Performance Management) Storage Administrator (Local Copy) Storage Administrator (Remote Copy) Storage Administrator (Initial Configuration) Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>Create, edit, or delete private logical group</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Downloads (Tools menu)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin, Modify, View</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td>Download related programs</td>
<td>Any</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Provisioning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Performance Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Local Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Initial Configuration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(System Resource Management)</td>
<td></td>
</tr>
<tr>
<td>Link and Launch</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Launch other HCS products</td>
<td>When starting Element Manager, the resource group to which the target resource belongs</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Storage Systems (Resources & Administration tabs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add storage systems</td>
<td>All Resources</td>
<td>Admin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit storage systems</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>(storage system name, IP address, host name, user name, or password)</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Refresh storage systems</td>
<td>Resource group to which the resources of the target system belong</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Provisioning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Performance Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Local Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Initial Configuration)</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Acquire performance information when the storage systems are updated</td>
<td>Resource group to which the resources of the target system belong</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (System Resource Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Performance Management)</td>
<td></td>
</tr>
<tr>
<td>Delete storage systems</td>
<td>All Resources</td>
<td>Admin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apply storage system resource labels to Device Manager</td>
<td>Resource group to which the target storage system belongs</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hosts (Resources & Administration tabs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add hosts</td>
<td>Any</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>Edit hosts</td>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>Refresh hosts</td>
<td></td>
<td>Storage Administrator (Provisioning)</td>
<td></td>
</tr>
<tr>
<td>Delete host (when deleting a host only)</td>
<td></td>
<td>Storage Administrator (Performance Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Local Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Initial Configuration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (System Resource Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete host (when deleting a host and its related storage resources)</td>
<td>Resource group to which the storage resource to be deleted belongs</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Provisioning)</td>
<td></td>
</tr>
<tr>
<td>Scan host</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>Merge host</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Re-synchronize with the hosts managed by Compute Systems Manager</td>
<td>Any</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Provisioning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Performance Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Local Copy)</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin, Modify, View</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Initial Configuration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (System Resource Management)</td>
<td></td>
</tr>
<tr>
<td>LUN Paths, HBAs, Host Modes</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Edit WWN nickname</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Edit LUN path, edit host mode or host mode option, or edit LUN path when the HBA is replaced</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Data Collection Tasks (Administration tab)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View Data Collection tasks list</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Delete or view details of data collection tasks (add or delete storage systems)</td>
<td>All Resources</td>
<td>Admin</td>
<td></td>
</tr>
<tr>
<td>You can perform actions only on tasks that you have created even if All Resources is not allocated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete or view details of data collection tasks (edit storage systems)</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>You can perform actions on tasks that you have created even if All Resources is not allocated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View details of data collection tasks (refresh storage systems or update database)</td>
<td>All Resources or resource groups to which a target storage system belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>You can perform actions on tasks that you have created even if All Resources is not allocated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the storage system is aVSP G1000, the default resource group can also perform this action.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Delete data collection tasks (refresh storage systems or update database)</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You can perform actions on tasks that you have created even if All Resources is not allocated.</td>
<td>Storage Administrator (System Resource Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the storage system is aVSP G1000, the default resource group can also perform this action.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View details of data collection tasks (add, edit, update a host, or delete only hosts)</td>
<td>Any</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Provisioning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Performance Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Local Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Initial Configuration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (System Resource Management)</td>
<td></td>
</tr>
<tr>
<td>View details of data collection tasks (tasks related to a file server)</td>
<td>Any</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Provisioning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Performance Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Local Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (Initial Configuration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator (System Resource Management)</td>
<td></td>
</tr>
<tr>
<td>Restart data collection tasks</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin, Modify, View</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td>You can perform actions on tasks that you have created even if All Resources is not allocated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCS Tasks (Task & Alerts tab)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View HCS tasks list</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>View HCS tasks related to a storage system, task details, stop tasks, change task schedules, cancel tasks, delete tasks, or move tasks to the history.</td>
<td>All Resources</td>
<td>Admin, Modify, or the user who created the task.</td>
<td>Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>View details of HCS tasks (tasks related to a file server or an HDT monitoring schedule template), change task schedules, stop tasks, cancel tasks, delete task, move tasks to the history.</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>Restart HCS tasks</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>System Tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View system tasks</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Manage system tasks (when in the Tasks & Alerts tab)</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Manage system tasks (when using Hitachi Device Manager - Storage Navigator)</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>Default resource group of the storage system. You can perform these actions on tasks that you have created even if All Resources is not allocated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For tasks that require Admin permission, you must have Admin permission to register the task.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>you have created even if All Resources is not allocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alerts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View alerts.</td>
<td>Resource group to which the resources of the target storage system belong.</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Delete alerts.</td>
<td>Resource group to which the resources of the target storage system belong.</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Provisioning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Performance Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Local Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Initial Configuration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(System Resource Management)</td>
<td></td>
</tr>
<tr>
<td>Search & Reports (CSV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit shared search conditions, or</td>
<td>All Resources</td>
<td>Admin</td>
<td></td>
</tr>
<tr>
<td>change them to private.</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Output CSV files containing resource</td>
<td>Resource group to which the target resource belongs.</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>information.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add or delete parity groups</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>Create volumes</td>
<td>Resource group to which the target parity group or the LDEV ID of a DP pool</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>volume to which a DP pool belongs and the resource group to which unused LDEV</td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID belongs.</td>
<td>(Provisioning)</td>
<td></td>
</tr>
<tr>
<td>Edit volume label</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Provisioning)</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Allocate volumes, allocate like volumes, define clustered-host storage, or cancel volume allocation.</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Delete volumes</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Shred volumes</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Create LUSE volumes</td>
<td>Resource group to which the LDEV ID of the target volume belongs</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>Release LUSE volumes</td>
<td>Resource group to which the LDEV ID of the target LUSE volume belongs</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>Volumes - global-active device pairs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View, modify and add when using Set up Global-Active Device.</td>
<td>All Resources</td>
<td>Admin</td>
<td>-</td>
</tr>
<tr>
<td>Allocate and unallocate global-active device pairs</td>
<td>The resource group to which the target resource belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Checking global-active device volume status</td>
<td>The resource group to which the target resource belongs.</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Delete remote paths</td>
<td>The resource group to which the resources of the target storage system belong.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Remote Copy)</td>
</tr>
<tr>
<td>Delete Quorum disks</td>
<td>The resource group to which the resources of the target storage system belong.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Unvirtualize Quorum disks</td>
<td>Resource group that can access the external port and parity group of an internal storage system, and internal volumes that belong to the external parity groups, and host group, volume, target port of an external storage system.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Unallocate command device volumes</td>
<td>The resource group to which the target resource belongs.</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td>Change a command device to a normal volume (delete</td>
<td>The resource group to which the target resource belongs.</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>command device)</td>
<td></td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Storage Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtualize volumes of a registered external storage</td>
<td>Resource group that can access the external port and LDEV ID of an internal</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>system.</td>
<td>storage system, and the port, LDEV ID, and Host Group ID of an external</td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>storage system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtualize volumes of an unregistered external</td>
<td>Resource group that can access external port and LDEV ID of an internal</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>storage system.</td>
<td>storage system.</td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvirtualize volumes of a registered storage system.</td>
<td>Resource group that can access the external port and parity group of an</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>internal storage system, and internal volumes that belong to the external</td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parity groups, and host group, volume, target port of an external storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>system.</td>
<td>system.</td>
<td></td>
</tr>
<tr>
<td>Unvirtualize volumes of an unregistered storage</td>
<td>Resource group that can access the external port and parity group of an</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td>system.</td>
<td>internal storage system and the internal volumes belong to external</td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parity groups.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pools/Tiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create, edit, expand, delete, or shrink pools.</td>
<td>Resource group to which the target LDEV ID of a DP pool volume to which a</td>
<td>Admin or Modify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP pool belongs.</td>
<td>Custom (VSP G1000)</td>
<td></td>
</tr>
</tbody>
</table>

Setting up users and access control

Hitachi Command Suite User Guide
<table>
<thead>
<tr>
<th>Function</th>
<th>Resource Group</th>
<th>Required Roles</th>
<th>Custom (VSP G1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create, edit, or delete tiers.</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>One of the following: Storage Administrator (Provisioning) Storage Administrator (Performance Management) Storage Administrator (Local Copy) Storage Administrator (Remote Copy) Storage Administrator (Initial Configuration) Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>Edit DP pool name</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Expand DP volume size or reclaim zero pages.</td>
<td>Resource group to which the target LDEV ID of a DP volume belongs and the resource group to which the LDEV ID of a DP pool volume to which a DP pool belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Manually start and stop the monitoring and tier relocation of HDT pools.</td>
<td>Resource group to which the target LDEV ID of an HDT pool volume to which an HDT pool belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Create, edit, or delete schedule templates for HDT pool monitoring and tier relocation.</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>Apply schedule template for HDT pool monitoring and tier relocation.</td>
<td>Resource group to which the target LDEV ID of an HDT volume belongs, and the resource group to which the LDEV ID of an HDT pool volume to which an HDT pool belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Edit tier relocation for HDT volumes.</td>
<td>Resource group to which the target LDEV</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin, Modify, View</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td></td>
<td>ID of an HDT volume belongs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit tiering policy for HDT volumes.</td>
<td>Resource group to which the target LDEV ID of an HDT volume belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Change tiering policy definition for HDT volumes (customize tiering policies).</td>
<td>Resource group to which the storage system of HDT volumes, and to which the target tiering policy is applied belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Verify whether tiering policies for HDT volumes have been applied.</td>
<td>Resource group to which the LDEV IDs of the volumes to which the tiering policy has been applied belongs.</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Manage data placement profiles for HDT volumes (creating, updating, editing, deleting, applying profiles, releasing applied profiles, and setting schedules).</td>
<td>Resource groups to which the LDEV ID of every HDT volume included in the target data placement profile belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Edit tier rank for external HDT pool volumes.</td>
<td>Resource group to which the target LDEV ID of an external volume (HDT pool volume) to which an HDT pool belongs.</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>File Servers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit file server names</td>
<td>Any</td>
<td>Admin or Modify</td>
<td>One of the following: Storage Administrator (Provisioning) Storage Administrator (Performance Management) Storage Administrator (Local Copy) Storage Administrator (Remote Copy) Storage Administrator (Initial Configuration)</td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin, Modify, View</td>
<td></td>
</tr>
<tr>
<td>Delete file server</td>
<td>Any</td>
<td>Admin or Modify</td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Storage Administrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(System Resource</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Management)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Storage Administrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Provisioning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Storage Administrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Management)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Storage Administrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Local Copy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Storage Administrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Remote Copy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Storage Administrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Initial Configuration)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File Server - HNAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create, expand, or delete a storage pool</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>Change a storage pool name</td>
<td>Even if All Resources is not assigned, tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hitachi NAS Platform v11.3 or later)</td>
<td>can be performed by following the same</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>steps used for Hitachi NAS Platform versions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>earlier than v11.3. In this case, the SMU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>permission appropriate to the task is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create, expand, or delete a storage pool</td>
<td>Any</td>
<td>Any</td>
<td>In addition, the SMU permission appropriate to</td>
</tr>
<tr>
<td>(Hitachi NAS Platform versions earlier than 11.3)</td>
<td></td>
<td></td>
<td>the task is required.</td>
</tr>
<tr>
<td>Add, edit, or delete file shares</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>(Hitachi NAS Platform v11.1 or later)</td>
<td>Even if All Resources is not assigned, tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>can be performed by following the same</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>steps used for Hitachi NAS Platform versions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>earlier than v11.1. In this case, the SMU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>permission appropriate to the task is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Expand, mount, unmount, or delete a file system</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>(Hitachi NAS Platform v11.1 or later)</td>
<td>Even if All Resources is not assigned, tasks can be performed by following the same steps used for Hitachi NAS Platform versions earlier than v11.1. In this case, the SMU permission appropriate to the task is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add, edit, or delete file shares</td>
<td>Any</td>
<td>Any</td>
<td>In addition, you must have the SMU permission for the task.</td>
</tr>
<tr>
<td>(Hitachi NAS Platform versions earlier than v11.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expand, mount, unmount, or delete a file system</td>
<td>Any</td>
<td>Any</td>
<td>In addition, you must have the SMU permission appropriate to the task.</td>
</tr>
<tr>
<td>(Hitachi NAS Platform versions earlier than v11.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set up or modify Admin services EVS</td>
<td>Any</td>
<td>Admin or Modify</td>
<td>One of the following:</td>
</tr>
<tr>
<td>(Hitachi NAS Platform v10.2.3071 or later)</td>
<td></td>
<td></td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Storage Administrator (Performance Management)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Storage Administrator (Local Copy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Storage Administrator (Remote Copy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Storage Administrator (Initial Configuration)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>Create a file system</td>
<td>All Resources</td>
<td>Admin or Modify</td>
<td>-</td>
</tr>
<tr>
<td>(Hitachi NAS Platform v10.2.3071 or later)</td>
<td>Even if All Resources is not assigned, tasks can be completed by following the same steps used for Hitachi NAS Platform versions earlier than v10.2.3071. In this case, the SMU permission appropriate to the task is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin, Modify, View</td>
<td>Custom (VSP G1000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>case, the SMU permission appropriate to the task is required.</td>
<td>permission appropriate to the task is required.</td>
</tr>
<tr>
<td>Create a file system (Hitachi NAS Platform versions earlier than v10.2.3071)</td>
<td>Any</td>
<td>Any</td>
<td>In addition, you must have the SMU permission to perform these tasks.</td>
</tr>
<tr>
<td>Change settings of a storage pool</td>
<td>Any</td>
<td>Any</td>
<td>In addition, the SMU permission appropriate to the task is required.</td>
</tr>
<tr>
<td>Edit a file system</td>
<td>Any</td>
<td>Any</td>
<td>In addition, you must have the SMU permission to perform these tasks.</td>
</tr>
<tr>
<td>Edit the system drive</td>
<td>Any</td>
<td>Any</td>
<td>In addition, you must have the SMU permission to perform these tasks.</td>
</tr>
<tr>
<td>Create or edit a system drive group (Hitachi NAS Platform v10.1.3071 or later)</td>
<td>Any</td>
<td>Any</td>
<td>In addition, you must have the SMU permission to perform these tasks.</td>
</tr>
<tr>
<td>File Server - HDI & HNAS F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create a file system (when linked with Hitachi File Services Manager).</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify With any role, you can use volumes allocated to the file server. In addition, you must have Hitachi File Services Manager Admin permissions.</td>
<td>One of the following: Storage Administrator (Provisioning) Storage Administrator (Performance Management) Storage Administrator (Local Copy) Storage Administrator (Remote Copy) Storage Administrator (Initial Configuration) Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>Expand or delete a file system (when linked with Hitachi File Services Manager).</td>
<td>Resource group to which the target resource belongs</td>
<td>Any</td>
<td>In addition, you must have Hitachi File Services Manager Admin permissions.</td>
</tr>
<tr>
<td>Add, edit, or release file shares (when linked with Hitachi File Services Manager).</td>
<td>Any</td>
<td>Any</td>
<td>In addition, you must have Hitachi File Services Manager Admin permissions.</td>
</tr>
<tr>
<td>Replication</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify</td>
<td>Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Function</td>
<td>Resource Group</td>
<td>Required Roles</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Define copy pairs, or change the status of copy pairs.</td>
<td>To perform replication management in Device Manager, the target resource must be allocated to a Device Manager resource group, and that resource group must have a role assigned. Access permissions are required for the LDEV ID of the command device or for the LDEV IDs of the volumes that make up the copy pair.</td>
<td>Admin or Modify For local copy: Storage Administrator (Local Copy) For remote copy: Storage Administrator (Remote Copy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All Resources</td>
<td>Admin or Modify You must have Replication Manager View permissions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All Resources</td>
<td>Admin, Modify, or View You must have Replication Manager View permissions.</td>
<td></td>
</tr>
<tr>
<td>Mobility (Migration)</td>
<td>Resource group to which the target LDEV ID of an HDT pool or each tiering policy of HDT volumes.</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resource group to which the target LDEV ID of an HDT volume belongs.</td>
<td>Any</td>
<td></td>
</tr>
</tbody>
</table>

Setting up users and access control

Hitachi Command Suite User Guide 123
<table>
<thead>
<tr>
<th>Function</th>
<th>Resource Group</th>
<th>Required Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the Trend Chart and output the CSV file from the Mobility tab.</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin, Modify, View, Custom (VSP G1000)</td>
</tr>
<tr>
<td>Data migration</td>
<td>Resource group to which the target resource belongs</td>
<td>Admin or Modify, Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Virtual ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display Virtual ID information</td>
<td>Resource group to which the target resource belongs</td>
<td>Any</td>
</tr>
<tr>
<td>Resources of virtual storage machines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View information of virtual storage machines</td>
<td>Default resource group of the storage system.</td>
<td>Any</td>
</tr>
<tr>
<td>Create, edit or delete virtual storage machines.</td>
<td>All Resources</td>
<td>Admin</td>
</tr>
<tr>
<td>Move resources in a virtual storage machine to a default virtual storage machine, or resources in the default virtual machine to another virtual storage machine.</td>
<td>All Resources</td>
<td>Admin</td>
</tr>
<tr>
<td>Manage resources (including adding or deleting virtual information of LDEVs) in a virtual storage machine (except the default virtual storage machine).</td>
<td>Resource group to which the target resource belongs in the virtual storage machine.</td>
<td>Admin or Modify, Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From the Analytics tab, identify the existence of performance problems of storage systems, analyze MP Blades/Units performance, execute Health Check immediately, and view and export Health Check reports.</td>
<td>All Resources, Admin, Modify, or View You must have Tuning Manager View permissions.</td>
<td>-</td>
</tr>
<tr>
<td>Delete a Health Check report (Analytics tab).</td>
<td>All Resources</td>
<td>Admin, Modify, or View</td>
</tr>
</tbody>
</table>

Note:
- Custom (VSP G1000) applies to specific resource groups available in the VSP G1000 environment.
- Certain actions may require additional permissions beyond Admin, Modify, or View, as indicated.
In addition, you must be logged in with a user ID that has Tuning Manager Admin permissions or with the user ID that generated the Health Check report.

<table>
<thead>
<tr>
<th>Function</th>
<th>Resource Group</th>
<th>Required Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute Health Checks on a schedule (Analytics tab), change the threshold value for performance analysis of storage systems (Analytics tab).</td>
<td>All Resources</td>
<td>Admin, Modify, or View You must have Tuning Manager Admin permissions.</td>
</tr>
</tbody>
</table>

For HCS, custom roles (Storage, Security, and Audit Log roles) provide specific permissions for performing specific tasks (functions) on VSP G1000. Additional tasks (functions) are available when selecting System GUI from menus or application panes to open Hitachi Device Manager - Storage Navigator, and are listed in the table below.

Table 4-5 Required roles or custom roles for performing VSP G1000 specific functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Resource Group</th>
<th>Required Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisioning related operations: • Configuring caches • Configuring LDEVs, pools, and virtual volumes • Formatting and shredding LDEVs • Configuring external volumes • Creating and deleting quorum disks used in a global-active device environment. • Creating and deleting global-active device pairs. • Configuring alias volumes for Compatible PAV • Configuring Dynamic Provisioning • Configuring host groups, paths, and WWNs • Configuring Volume Migration except splitting Volume Migration pairs when using CCI. • Configuring access attributes for LDEVs • Configuring LUN security</td>
<td>Resource group to which the resources of the target system belong.</td>
<td>Admin or Modify Storage Administrator (Provisioning)</td>
</tr>
<tr>
<td>Performance related operations: • Configuring monitoring • Starting and stopping monitoring</td>
<td>Resource group to which the resources of the target system belong.</td>
<td>Admin or Modify Storage Administrator (Performance Management)</td>
</tr>
<tr>
<td>Functions</td>
<td>Resource Group</td>
<td>Required Roles</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Local copy management:</td>
<td>Resource group to which the resources of the target system belong.</td>
<td>Admin or Modify</td>
</tr>
<tr>
<td>• Performing pair operations for local copy</td>
<td></td>
<td>Storage Administrator (Local Copy)</td>
</tr>
<tr>
<td>• Configuring environmental settings for local copy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Splitting Volume Migration pairs when using CCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote copy management:</td>
<td>Resource group to which the resources of the target system belong.</td>
<td>Admin or Modify</td>
</tr>
<tr>
<td>• Remote copy operations in general</td>
<td></td>
<td>Storage Administrator (Remote Copy)</td>
</tr>
<tr>
<td>• Managing global-active device pairs (except for creation and deletion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial configuration:</td>
<td>Default resource group of the storage system.</td>
<td>Admin or Modify</td>
</tr>
<tr>
<td>• Configuring settings for storage systems</td>
<td></td>
<td>Storage Administrator (Initial Configuration)</td>
</tr>
<tr>
<td>• Configuring settings for SNMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Configuring settings for e-mail notification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Configuring settings for license keys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Viewing, deleting, and downloading storage configuration reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Acquiring all the information about the storage system and refreshing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System resource management:</td>
<td>Default resource group of the storage system.</td>
<td>Admin or Modify</td>
</tr>
<tr>
<td>• Configuring settings for CLPR</td>
<td></td>
<td>Storage Administrator (System Resource Management)</td>
</tr>
<tr>
<td>• Configuring settings for MP Blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Deleting tasks and releasing exclusive locks of resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Completing SIMs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Configuring attributes for ports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Configuring LUN security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Configuring Server Priority Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Configuring tiering policies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For global-active device:</td>
<td>Default resource group of the storage system.</td>
<td>Admin</td>
</tr>
<tr>
<td>• Setting the reserved attribute for a volume to be used in a global-active device pair</td>
<td></td>
<td>Security Administrator (View & Modify)</td>
</tr>
<tr>
<td>For encryption key and authentication management (does not allow user management):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Creating an encryption key, configuring encryption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Viewing and switching the location at which to create an encryption key</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Backing up and restoring an encryption key</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Deleting an encryption key that is backed up on the key management server.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Viewing and changing the password policies for backing up an encryption key on the management client.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Configuring the Fibre Channel authentication (FC-SP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewing storage encryption key and authentication:</td>
<td>Default resource group</td>
<td>Admin</td>
</tr>
<tr>
<td>• Viewing storage encryption key and authentication</td>
<td></td>
<td>Security Administrator (View & Modify)</td>
</tr>
</tbody>
</table>
Setting up users and access control

Table: Access Control Options

<table>
<thead>
<tr>
<th>Functions</th>
<th>Resource Group</th>
<th>Required Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Viewing information about encryption settings</td>
<td>of the storage system.</td>
<td>Admin or Security Administrator (View Only)</td>
</tr>
<tr>
<td>• Viewing information about encryption keys on the key management server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage audit log management:</td>
<td>Default resource group of the storage system.</td>
<td>Admin or Audit Log Administrator (View & Modify)</td>
</tr>
<tr>
<td>• Configuring audit log settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Downloading audit logs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage audit log access:</td>
<td>Default resource group of the storage system.</td>
<td>Admin or Audit Log Administrator (View & Modify)</td>
</tr>
<tr>
<td>• Viewing storage audit log settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Downloading audit logs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related concepts
- [About user accounts and controlling access to resources](#) on page 84

Related tasks
- [Changing permissions for a user account](#) on page 90
- [Editing the profile for a user account](#) on page 88

Related references
- [User group roles](#) on page 104
- [Custom roles](#) on page 105

Creating user groups

You can create user groups and assign resource groups either immediately, or later as needed. The assigned resource group rights provide user group members with view, modify, admin, or custom roles for displaying, modifying, or managing the storage resources for this group.

Creating a user group also creates a private logical group for that user group.

Procedure

1. On the **Administration** tab, select **User Groups**. Existing user groups are displayed.
2. Click **Create User Group** and enter a name and description.
3. Click **Add Users** to select the user group members.
4. Click **Add Resource Groups** to assign specific storage system resources to the user group, and for each resource group set the role (permissions) to one of the following:
 - View
5. Click **OK**.
 You can click the user group name to verify group membership (list of users) on the **Users** tab. On the **Resource Groups** tab, you can verify the resource groups and roles specified during user group creation. **Add Resource Groups**, **Remove Resource Groups**, and **Edit Roles** buttons allow you to modify resources and access rights for the user group.

Result
The new user group is displayed and a new private logical group is created.

Related concepts
- [About user groups](#) on page 102

Related tasks
- [Editing a user group](#) on page 128
- [Assigning resource groups and roles to a user group](#) on page 129
- [Deleting user groups](#) on page 129

Editing a user group

As user information and membership in user groups change, you can update this information.

Procedure

1. On the **Administration** tab, select **User Groups**.
2. Select the target user group and click **Edit User Group**.
3. Change the name of the user group, or the user who manages the user group.

Result
Editing changes appear in the list in the User Groups tab.

Related concepts
- [About user groups](#) on page 102
- [About access control](#) on page 94

Related tasks
- [Creating user groups](#) on page 127
- [Assigning resource groups and roles to a user group](#) on page 129
Assigning resource groups and roles to a user group

You can assign resource groups and roles to a user group.

Procedure

1. Select the Administration tab and click on User Groups.
2. In the User Groups tab, click the name of the target user group.
3. In the Resource Groups tab, click Add Resource Groups.
4. Set the roles to be assigned to the user group. The assigned resource
groups and roles are displayed in detail by clicking the link for the user
group name.

Related tasks

• Creating resource groups on page 100
• Creating user groups on page 127

Changing a user’s user group

You can modify information about the user groups that a user belongs to.

Procedure

1. On the Administration tab, select User Groups.
2. In the Users tab select the target user group and click Assign User
Groups.
3. Change the user groups to which a user belongs.

Result

Changes will appear in the Users tab.

Related concepts

• About access control on page 94

Related tasks

• Creating user groups on page 127
• Assigning resource groups and roles to a user group on page 129
• Editing a user group on page 128

Deleting user groups

Deleting a user group deletes the associated private logical group and all
logical groups that belong to that private logical group. Deleting a user group
does not delete the related resource groups.
Procedure

1. On the Administration tab, select User Groups.
2. Select the user groups to delete.
3. Click Delete Groups.
4. Click OK.

Result

The user groups you deleted no longer appear in the list of user groups.
Provisioning storage

This module describes provisioning storage.

- Creating a storage operating environment
- Allocating storage
- Creating and deleting parity groups
- Creating and deleting volumes
- Virtualizing external storage
- Virtualizing storage capacity (HDP/HDT)
- Virtualizing storage tiers (HDT)
- Allocating and unallocating volumes
- Configuring Fibre Channel ports
- Managing LUN paths
- Managing Hitachi NAS Platform file systems and shares
- Managing Hitachi NAS Platform F and Hitachi Data Ingestor file systems and shares
Creating a storage operating environment

To be able to use volumes of a storage system from hosts or file servers, configure the operating environment beforehand. The workflow for configuring the environment differs depending on the scale and operation method of the storage systems.

For example, you can create parity groups for supported mid-range storage, then create and allocate volumes. When the volumes are allocated, file systems can be created and mounted. For enterprise storage, the parity groups will already exist as a result of installation. You can allocate volumes for registered hosts and file servers.

In some environments, you can virtualize storage devices so that multiple, different storage systems can be used as a single storage system.

If your storage system supports DP pools, you can create DP pools such that virtual volumes can be allocated to hosts. By virtualizing storage devices and storage capacity, you can decrease both management and operational costs by more effectively using physical resources.

The following figure shows an example flow for building an environment for performing operations with virtualized storage devices or volumes, when using storage systems such as the VSP G1000, VSP, and HUS VM.

Related concepts

- [About creating parity groups](#) on page 134
- [About creating volumes](#) on page 139
- [About virtualizing and unvirtualizing volumes](#) on page 149
- [About virtualizing storage capacity](#) on page 160
- [About virtualizing storage tiers](#) on page 175
- [Allocating storage](#) on page 133
Allocating storage

Volumes are allocated to hosts for applications needing storage.

A variety of methods for allocating volumes is available. For example, you can select one or more hosts, then identify and allocate existing volumes. You can also select one or more volumes, then identify the host that needs the volumes. You can also establish I/O paths between hosts and volumes when you allocate volumes.

To prepare for loss of data caused by disk failure, disasters, or other issues, you can manage the redundancy of important operational data by creating a replication environment for volumes within a storage system or between storage systems, as necessary.

⚠️ **Note:** Replication services apply to host and file server volumes, but not file server file systems.

Related concepts

- [About allocating volumes](#) on page 188
- [About managing Hitachi NAS Platform file systems and shares](#) on page 231
- [About managing Hitachi NAS Platform F and Hitachi Data Ingestor file systems and shares](#) on page 254
- [About replicating volumes (pair management)](#) on page 307
- [Creating a storage operating environment](#) on page 132
Creating and deleting parity groups

This module describes how to create and delete parity groups on Hitachi Unified Storage (HUS) 100 and Adaptable Modular Storage (AMS) 2000 family of storage systems.

About creating parity groups

Creating parity groups is necessary for specific mid-range storage requirements. Hitachi Command Suite supports parity group management only for Hitachi Unified Storage (HUS) 100 and Adaptable Modular Storage (AMS) 2000 family of storage systems.

You must first create parity groups before you can create and then allocate the basic volumes of a storage system to a host. A parity group is created from multiple drives. For example, users create parity groups in the following cases:

- When introducing a new storage system (in the HUS 100 or AMS 2000 family of storage systems) with installed drives.
- When allocating volumes to a host or creating a volume and the displayed list of parity groups indicates that there is not enough capacity, and drives are added.
- When creating a parity group for use in a Hitachi NAS platform storage pool.

The following graphic illustrates the relationship between parity groups, volumes, and drives:

Related concepts

- About deleting parity groups on page 137
- Creating a storage operating environment on page 132

Related tasks

- Creating parity groups on page 135
Related references

- Create parity groups dialog box on page 136
- Conditions for parity groups that are used in storage pools on page 236

Creating parity groups

You can create parity groups for Hitachi Unified Storage (HUS) 100 and Adaptable Modular Storage (AMS) 2000 family of storage systems. Hitachi Command Suite supports parity group management only for HUS 100 and AMS 2000 family of storage systems.

Prerequisites

- Register the target storage system
- Identify the target storage system name
- Identify the required number of parity groups, and related capacities
- Identify desired RAID levels, drive types and speeds (RPM)

Procedure

1. On the Resources tab, choose one of the following options to create parity groups:
 - From General Tasks, select Create Parity Groups.
 - Select a supported storage system and from the Actions menu, choose Create Parity Groups.
 - Select a supported storage system, list existing parity groups, and click Create Parity Groups.
 - Right-click on a supported storage system and choose Create Parity Groups.

2. In the Create Parity Groups dialog box, select a storage system, drive types, RAID level, and parity group options.

3. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

4. (Optional) Update the task name and provide a description.

5. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.

6. Click Submit.
 If the task is scheduled to run immediately, the process begins.

7. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

Created parity groups are added to the target storage system parity group list.
Create parity groups dialog box

Creating parity groups is necessary for storage systems such as Hitachi Unified Storage (HUS) 100 and Adaptable Modular Storage (AMS) 2000 family of storage systems that have been configured with additional physical disk capacity, but still require parity group RAID configuration before creating and allocating volumes.

When you enter the minimum required information in this dialog box, the Show Plan button activates to allow you to review the plan. Click the Back button to modify the plan to meet your requirements.

The following table describes the dialog box fields, subfields, and field groups. A field group is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double-arrow symbol (>>).

As you enter information in a dialog box, if the information is incorrect, errors that include a description of the problem appear at the top of the box.

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage System</td>
<td>-</td>
<td>This field will either display the selected storage system name, or prompt the user to select the storage system from a list.</td>
</tr>
<tr>
<td>Available Drive Types</td>
<td>-</td>
<td>Available drives are displayed, including drive type, drive speed, form factor, the number of available drives (which influences configurable RAID levels for a given set of drives), and total capacity.</td>
</tr>
<tr>
<td>RAID Level</td>
<td>RAID</td>
<td>Valid RAID levels are displayed for the selected drive type and count. For example, RAID 0, 1, 1+0, 5 and 6 are valid RAID configurations when 6 drives are available (for example, HUS 100). With 2 drives, only RAID 0 and 1 would be valid. These changes are reflected in the dialog box based on the selected storage system (and supported RAID levels), and selected drive type and count.</td>
</tr>
<tr>
<td>Drive</td>
<td></td>
<td>Additionally, valid drive combinations are displayed for a given RAID level. For example, with 6 available drives, RAID 5 can be configured as 2D+1P, 3D+1P, 4D+1P, or 5D+1P (for example, HUS 100). Using 2D+1P an administrator could create two parity groups instead of one, and use them for different requirements, or the administrator could create a single large 5D+1P parity group using all available drives.</td>
</tr>
</tbody>
</table>
Field | Subfield | Description
---|---|---
Parity Group capacity | - | This displays the usable capacity of the selected RAID level and drive configuration, and the size of the physical drives.
No. of Parity Groups | - | Specify the number of parity groups to create. The maximum is determined by the selected RAID configuration and the total number of available drives.

>> Advanced Options
- **Parity Group Number:**
 - Auto parity group number assignments are made by the system, and start at 1 by default.
 - Manual parity group number assignments are made by the administrator.
- **Drive Selection:**
 - Automatic drive selection means the drives needed for the parity group will be chosen by the system.
 - Manual drive selection allows the administrator to determine which physical drives will be used for a parity group. For example, for a RAID 5, 2D+1P parity group, the system will typically select the first three (3) drives seen. Clicking Select Drives allows the administrator to list all drives, and select the desired drives for the parity group.
- **Selected Drives:**
 - This panel displays the automatically or manually selected drives for parity group creation, as discussed above. The display includes drive number, tray number, HDU number, drive model and related firmware.

Related concepts
- [About creating parity groups](#) on page 134

Related tasks
- [Creating parity groups](#) on page 135

About deleting parity groups
Deleting parity groups is one of the parity group management tasks you can perform. Hitachi Command Suite supports parity group management only for Hitachi Unified Storage (HUS) 100 and Adaptable Modular Storage (AMS) 2000 family of storage systems.

Free drives are necessary to create and use DP pools in HUS 100 and AMS 2000 family of storage systems. If there are not enough free drives when creating a DP pool, users can delete unnecessary parity groups to increase the number of free drives.

Caution: When a parity group is deleted, the data in the parity group volumes is deleted.

Related tasks
- [Deleting parity groups](#) on page 138
Deleting parity groups

You can delete parity groups only from Hitachi Unified Storage (HUS) 100 and Adaptable Modular Storage (AMS) 2000 family of storage systems.

Note: When you remove an encrypted parity group in HUS 150 systems, this cancels the encryption for all drives that make up the target parity group, and releases the encryption on all volumes in the parity group.

Prerequisites

- Identify the target storage system that is associated with the parity groups you want to delete.
- Identify the target parity groups to delete.
- Unallocate all volumes in the target parity groups.

Procedure

1. On the *Resources* tab, select *Storage Systems*.
2. Expand the tree, select the target storage system, and select *Parity Groups*.
3. From the list of parity groups, select one or more target parity groups to delete, and click *Delete Parity Groups*.

Note: The *Delete Parity Groups* button is supported only on the HUS 100 and AMS 2000 family of storage systems.

4. In the *Delete Parity Groups* dialog box, confirm that the information displayed is correct. Optionally, update the task name and provide a description.
5. Expand *Schedule* to specify the task schedule. The task can be run immediately or scheduled for later. The default setting is *Now*.
6. Click *Submit*. If you selected *Now*, the delete parity groups process begins.
7. You can check the progress and the result of the delete parity groups task on the *Tasks & Alerts* tab. Verify the results for each task by viewing the details of the task.

Result

The deleted parity group no longer appears in the parity groups list for the target storage system.

Related concepts

- [About deleting parity groups](#) on page 137
Creating and deleting volumes

This module describes how to create volumes and delete unallocated volumes.

About creating volumes

You create volumes, then allocate them to a host.

You create volumes by using the available space in a DP pool or parity group. You can then access the volumes when you are ready to allocate them to a host. If, while allocating volumes to a host, no volumes match the specified requirements, volumes are automatically created using the available space. Note that when a basic volume is created, the volume is also formatted at the same time.

Newly created volumes are included in the list of Open-Unallocated volumes until you allocate them to a host.

Because creating volumes takes time, you should create volumes in advance.

Tip: For Virtual Storage Platform G1000 storage systems, you can block volumes separated from parity groups, recover parity groups from errors, and format volumes by using the windows available by clicking the System GUI link. To access the System GUI link, on the Resources tab, right-click Parity Groups for the target storage system, and then select System GUI from the menu. Or, click Parity Groups for the target storage system, and then click the System GUI link that appears in the application pane.

Additionally, you can format, block, and restore volumes, configure command devices, edit command devices, assign MP blades, and force delete copy pairs (TC, UR, and GAD) by using the windows available by clicking the System GUI link. To access these windows, on the Resources tab, right-click Volumes for the target storage system, and then select System GUI from the menu.

For information about how to perform tasks that are available by clicking System GUI, see the Help for the appropriate window, or see the Hitachi Virtual Storage Platform G1000 Provisioning Guide for Open Systems.

When you are linking with Hitachi NAS Platform v11.3 or later and volumes are created for creating or expanding storage pools, it is recommended that you create volumes using the Create Storage Pool or Expand Storage Pool dialog boxes. Device Manager can automatically specify the number of volumes and capacity, and create volumes following the best practices for configuring storage pools.

Related concepts

- About deleting unallocated volumes on page 145
Notes on performing quick formats

A quick format might impose a heavy workload on some components and lower I/O performance of all hosts running in the target storage system.

We recommend running a quick format when system activity is low and major system operations are not running.

We also recommend running a quick format on a maximum of eight volumes at first, and then confirming that the quick format has not lowered host I/O performance. After that, when you perform a quick format on other volumes, we recommend increasing the number of volumes to be formatted in increments of four.

In particular, if the storage system components are configured as follows, the host I/O performance is likely to be lowered when a quick format is performed:

- Components such as cache memory, CHAs (channel adapters), and DKAs (disk adapters) are in the minimum configuration.
- The number of installed components is extremely different among DKCs (controller chassis) or modules within a single storage system.

In these configurations, run a quick format on only one volume at first, review the host I/O performance, and then continue to run a quick format on other volumes one by one.

Related concepts
- About creating volumes on page 139

Related tasks
- Creating volumes on page 140
- Creating HNAS F or HDI file systems (HFSM v3.2 or later) on page 257

Related references
- Create Volumes dialog box on page 141
- Allocate Volumes dialog box on page 200

Creating volumes

For registered storage systems, volumes are created so they can be allocated to hosts.
Prerequisites

- Identify the storage system
- Identify the number of volumes to create
- Identify volume types and capacities

Procedure

1. On the Resources tab you can create volumes from several locations:
 - From General Tasks, select Create Volumes.
 - Select the storage system, click Actions, and select Create Volumes.
 - Select the storage system, list existing parity groups, and click Create Volumes.
 - Select the storage system, list existing DP pools, and click the Create Volumes button or select Create Volumes from Actions.

2. In the create volumes dialog box, configure volumes and their characteristics.

3. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

4. (Optional) Update the task name and provide a description.

5. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.

6. Click Submit.
 If the task is scheduled to run immediately, the process begins.

7. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

Created volumes are added to the target storage system Open-Unallocated volume list.

Related concepts

- About creating volumes on page 139

Related references

- Notes on performing quick formats on page 140
- Create Volumes dialog box on page 141

Create Volumes dialog box

Newly created volumes are placed in the Open-Unallocated folder of the user selected storage system until they can be allocated to hosts as needed.
When you enter the minimum required information in this dialog box, the Show Plan button activates to allow you to review the plan. Click the Back button to modify the plan to meet your requirements.

The following table describes the dialog box fields, subfields, and field groups. A field group is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double-arrow symbol (>>).

As you enter information in a dialog box, if the information is incorrect, errors that include a description of the problem appear at the top of the box.

Table 5-2 Create volumes dialog box

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Volumes</td>
<td>-</td>
<td>Manually enter the number of volumes to create, or use the arrows (click, or click and hold) to increment or decrement the volume count.</td>
</tr>
<tr>
<td>Volume Capacity</td>
<td>-</td>
<td>This number (in blocks, MB, GB, or TB) is the capacity to allocate for each volume. The total capacity to be allocated is calculated as No. of Volumes * Volume Capacity and is displayed.</td>
</tr>
<tr>
<td>Storage System</td>
<td>-</td>
<td>This field will either display the selected storage system name, or prompt the user to select the storage system from a list.</td>
</tr>
<tr>
<td>Volume Type</td>
<td>-</td>
<td>Select the volume type to create. For example Basic Volume, Dynamic Provisioning or Dynamic Tiering. The displayed volume types are determined by your selected storage system. If you do not see an expected volume type, check that you have selected the correct storage system.</td>
</tr>
<tr>
<td>Internal/External</td>
<td>-</td>
<td>When volume type is Basic Volume, or Dynamic Provisioning, volumes can be created using available capacity from the selected storage system (internal) or from an external storage system physically connected to the selected storage system (external).</td>
</tr>
<tr>
<td>Pool</td>
<td>-</td>
<td>When volume type is Dynamic Tiering, volumes can be created using Select Pool.</td>
</tr>
<tr>
<td>>> Advanced Options</td>
<td>Volume Selection</td>
<td>This is displayed if a storage system was selected and the volume type is Basic. Specify whether to use parity groups or free space to create a volume. This is only displayed when using Virtual Storage Platform G1000, Virtual Storage Platform, or Unified Storage VM.</td>
</tr>
<tr>
<td>Drive Type</td>
<td></td>
<td>If multiple drive types are displayed, you can designate a specific drive type.</td>
</tr>
<tr>
<td>Drive Speed (RPM)</td>
<td></td>
<td>If multiple drive speeds are displayed, you can designate a specific drive speed, or accept the default of any available speed.</td>
</tr>
<tr>
<td>Chip Type</td>
<td></td>
<td>If multiple chip types are displayed, you can designate a specific chip type.</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RAID Level</td>
<td>If multiple RAID levels are displayed, you can designate a specific RAID level, or accept the default of any available RAID level.</td>
<td></td>
</tr>
<tr>
<td>Select Free Space</td>
<td>After selecting a storage system, specifying Basic for the volume type, and Free Space with volume selection, you can specify free space for parity groups when creating volumes.</td>
<td></td>
</tr>
<tr>
<td>Parity Group</td>
<td>When volume type is Basic Volume, based on drive type, drive speed, chip type, and RAID level selections an appropriate parity group is selected and displayed for you. You can also manually select a parity group by clicking Select Parity Group. In the displayed list of parity groups, you can use sort and filter features on columns such as RAID level, or unallocated capacity (or other fields) to identify the preferred parity groups.</td>
<td></td>
</tr>
<tr>
<td>Pool</td>
<td>When volume type is Dynamic Provisioning, volumes can be created using Select Pool. The listed pools can vary depending on drive type, drive speed, chip type, and RAID level selections.</td>
<td></td>
</tr>
<tr>
<td>Tiering Policy Setting</td>
<td>Displays only if Dynamic Tiering is selected as the volume type, and an HDT pool has been selected with Select Pool (see previous Volume Selection section). You can select a specific tier policy for the volume to be allocated, or select All.</td>
<td></td>
</tr>
<tr>
<td>New Page Assignment Tier</td>
<td>For VSP G1000, VSP and HUS VM, selecting this option specifies to which hardware tier the new page of an HDT volume is to be assigned with a specified priority. Within the hardware tiers for which the tiering policy is set, specify High for an upper-level hardware tier, Middle for a medium-level hardware tier, and Low for a low-level hardware tier.</td>
<td></td>
</tr>
<tr>
<td>Relocation Priority</td>
<td>For VSP G1000, VSP and HUS VM, selecting this option specifies whether you want to prioritize the relocation of the data in HDT volumes.</td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td>Volume labels are searchable, and therefore recommended as a way to find volumes. The Initial value is not required, but can be useful for differentiation when creating multiple volumes. Reflect a label to the storage system is checked by default so that naming is consistent between HCS and the storage system itself.</td>
<td></td>
</tr>
<tr>
<td>LDEV ID</td>
<td>An LDEV ID can be assigned automatically or manually.</td>
<td></td>
</tr>
<tr>
<td>Format Type</td>
<td>You can request a quick format, or a basic format. Note that during a quick format, the load might become concentrated on some components, lowering the I/O performance of all hosts that are running in the target storage system.</td>
<td></td>
</tr>
</tbody>
</table>

Related concepts

- [About creating volumes](#) on page 139
About shredding volume data

Before deleting a volume that you no longer need, completely remove the data from the volume to avoid unauthorized use of information. The data can be removed by shredding or reformatting the volume.

Volume data is shredded by overwriting it repeatedly with dummy data, which securely destroys the original data. Some volumes, such as basic volumes and DP volumes that are allocated to hosts or used for replication, cannot be shredded.

Caution: You cannot restore data after it is shredded.

Some storage systems do not support the shredding functionality. For those storage systems, delete volume information by reformatting the volumes.

Related tasks
- Shredding volume data on page 144

Shredding volume data

Specify one or more volumes that are not allocated to a host and shred the data on the volumes.

Prerequisites
- Identify the storage system name that includes the volumes that you want to shred
- Identify the volumes to be shredded
- Unallocate the volumes to be shredded from the host

Caution: You cannot restore shredded data.

Procedure
2. Expand the Storage Systems tree, select a storage system, and from the volumes list, select the volumes whose data you want to shred.
3. Click Shred Volumes.
Note: Shred during off hours, such as overnight, so that the shredding process does not adversely affect system performance. To verify the standard required times for shredding, see the *Hitachi Volume Shredder User Guide*.

4. In the **Shred Volumes** dialog box, check the target volume to be shredded and edit the writing data pattern, if needed. If the storage system does not support shredding, the data will be formatted.

5. (Optional) Update the task name and provide a description.

6. (Optional) Expand **Schedule** to specify the task schedule. You can specify the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

7. Click **Submit**. If the task is scheduled to run immediately, the process begins.

8. You can check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

When the task completes, the data is shredded or reformatted from the volume.

Related concepts

- [About shredding volume data](#) on page 144

Related tasks

- [Deleting unallocated volumes](#) on page 146
- [Unallocating volumes from file servers](#) on page 215
- [Unallocating volumes from hosts](#) on page 214

About deleting unallocated volumes

Volumes that are not allocated to any host can be deleted and their space added to the unused capacity of DP pools or parity groups. To completely and securely remove the data, shred the volume data before deleting the volume.

Related concepts

- [About creating volumes](#) on page 139
- [About removing hosts and releasing associated resources](#) on page 73
- [About releasing a LUSE volume](#) on page 148

Related tasks

- [Deleting unallocated volumes](#) on page 146
Deleting unallocated volumes

You can delete unallocated volumes from a registered storage system.

Prerequisites

- Identify the target storage system
- Identify the target volumes
- Shred volume data, if needed
- Unallocate volumes

Procedure

1. On the Resources tab, select the target storage system.
2. Expand the tree and select the storage system from which you want to delete volumes.
3. Select Open-Unallocated or DP Pools and then select the DP Vols tab of the target DP pool.
4. From the volume list, select the volumes that you want to delete, and then click Delete Volumes.
5. Specify additional information, as appropriate:
 - Verify the information that is displayed.
 - Enter a name in Task Name.
 - Specify when to execute the task.
6. Click Submit, and confirm task completion.

Result

When the task completes, deleted volumes no longer appear in the Open-Unallocated or DP volume list.

Related concepts

- About deleting unallocated volumes on page 145

Related tasks

- Shredding volume data on page 144
- Unallocating volumes from file servers on page 215
- Unallocating volumes from hosts on page 214

About creating a LUSE volume

The functionality to create LUSE volumes is supported by mid-range and enterprise storage systems. However, mid-range storage systems do not ensure data integrity when creating LUSE volumes. Therefore, host administrators must back up data to a server or other location beforehand.

A LUSE volume is a collection of two or more basic volumes that have been grouped together to increase available capacity.
If the capacity of the LUSE volumes or basic volumes that have already been allocated to hosts becomes insufficient, you can increase capacity by adding unallocated volumes or creating LUSE volumes.

LUSE volumes are created by using volumes that belong to the same resource group, have the same drive type, and are at the same RAID level. When using FMD/SSD flash drives in a Virtual Storage Platform or HUS VM storage system, you can still create a LUSE volume even if the drive types are different.

Note: For Virtual Storage Platform G1000, you can not create LUSE volumes.

<table>
<thead>
<tr>
<th>Related tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Creating a LUSE volume on page 147</td>
</tr>
</tbody>
</table>

Creating a LUSE volume

LUN size expansion (LUSE) volumes are created by aggregating volumes into a larger logical volume.

Prerequisites

- Gather the name of the target host
- Identify the target volumes (LUSE volumes or basic volumes that are already allocated to the host).
- Back up the target volume (for mid-range storage systems this includes HUS 100, Hitachi AMS 2000, Hitachi SMS, and Hitachi AMS/WMS). Before creating LUSE volumes in mid-range storage systems, such as the AMS series, host administrators must back up data to a server or other location. This is because data might be corrupted when LUSE volumes are created.
- Create volumes to be added

Procedure

1. On the **Resources** tab, select **Hosts**.
2. Expand the tree and select the target OS.
3. Select the target host from the list of hosts, and from the displayed list of volumes, select the LUSE volume or basic volume, and then click **Create LUSE Volume**.
4. Click **Add Volumes** and select volumes to be added.
5. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.
6. (Optional) Update the task name and provide a description.
7. (Optional) Expand **Schedule** to specify the task schedule.
 - You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.
8. Click **Submit**. If the task is scheduled to run immediately, the process begins.

9. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

Information about the created LUSE volume can be verified in the list of volumes for the target host on the Resources tab.

Related concepts

- [About creating a LUSE volume](#) on page 146

About releasing a LUSE volume

To release a LUSE setting, the LUSE volume must first be unallocated from all hosts. Users can release a LUSE setting either by selecting it or using the Unallocating Volumes dialog box.

Note: For Virtual Storage Platform G1000, you cannot release LUSE volumes.

Related concepts

- [About removing hosts and releasing associated resources](#) on page 73
- [About deleting unallocated volumes](#) on page 145

Related tasks

- [Releasing a LUSE volume](#) on page 148

Related references

- [Unallocate volumes dialog box](#) on page 216

Releasing a LUSE volume

Releasing the LUSE setting for a target volume releases the LUSE volume.

Prerequisites

Before releasing a LUSE volume, make sure that the volume has been unallocated from all hosts.

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and for the target storage system, select **Volumes** and **Open-Unallocated**.
2. From the list of volumes, select the volume for which the LUSE setting is to be released, and click **Release LUSE Volumes**.
3. Verify that the information in the Plan Summary is correct.
4. (Optional) Update the task name and provide a description.
5. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
6. Click Submit.
 If the task is scheduled to run immediately, the process begins.
7. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result
When the task completes, the LUSE setting for the target volume is released.

Related concepts
- About releasing a LUSE volume on page 148

Virtualizing external storage

This module describes virtualizing external storage so that external volumes can be managed.

About virtualizing and unvirtualizing volumes
Virtualizing volumes is the process of mapping external storage system volumes to an internal storage system.

Virtualized volumes allow for centralized management of volumes from multiple external storage systems, in addition to the volumes from the single storage system being managed with Hitachi Command Suite.

The volumes in the external storage system (registered and referred to as external volumes) can be managed in the same way as the volumes in the internal storage system (registered and referred to as internal volumes). Volume virtualization provides the capability to optimize storage services to applications by facilitating movement of data between tiers and migration of data between different generations of technology.

Note: Internal and external storage systems can be connected by Fibre Channel or Fibre Channel over Ethernet, but connections between different port types with switches that convert between Fibre Channel and Fibre Channel over Ethernet are not supported.

When external storage is managed by an internal storage system, external volumes will be listed in the External Storage folder of the internal storage system.

External volumes can be used for various purposes:
• External volumes can be allocated to hosts the same as internal volumes are.
• Important data on internal volumes can be backed up to external volumes.
• Infrequently accessed data on internal volumes can be moved to external volumes for archiving.

You can virtualize volumes in two ways:
• Virtualizing volumes:
 In HCS, external volumes are mapped by specifying the external storage system, internal storage system, external volumes, and number of external paths. Although HCS manages only registered storage systems, external volumes in unregistered storage systems can also be mapped. If the external storage system is registered in HCS, you can directly specify individual external volumes in that storage system, or you can specify just the size and number of volumes. HCS suggests mapping plans accordingly.
• Discovering and virtualizing volumes:
 If HCS does not manage the external storage system, HCS detects the external volumes allocated to the internal storage system’s external ports, and then selects the volume to be used. If no volume that meets the conditions exists in the external storage system, a volume is automatically created from free space in the parity group.

When you want to perform a data migration or discard devices, you must cancel the virtualization. When you unvirtualize volumes, the virtualized volumes are unmapped from the specified external storage.
• If you are unvirtualizing volumes from a registered storage system, the volumes are automatically unallocated. You also have the options to delete the volumes or host group.
• If you are unvirtualizing volumes from an unregistered storage system, the volumes are only unmapped. Other management tasks are not available.

Tip: For Virtual Storage Platform G1000 storage systems, you can reconnect or disconnect external storage systems, reconnect or disconnect external volumes, edit path configurations, or unvirtualize external volumes by using the windows available by clicking the System GUI link. To access the System GUI link, on the Resources tab, right-click External Storage for the target storage system, and then select System GUI from the menu. Or, click External Storage for the target storage system, and then click the System GUI link that appears in the application pane.

For information about how to perform tasks that are available by clicking System GUI, see the Help for the appropriate window, or see the Hitachi Virtual Storage Platform G1000 Provisioning Guide for Open Systems.

For related information on external storage virtualization, see the Hitachi Universal Volume Manager User Guide.
Virtualizing volumes of a registered storage system

Choose from a list of existing unallocated volumes in the external storage system to be virtualized. Or specify the number of volumes and volume capacity to search for volumes that meet the criteria.

Prerequisites

- The internal and external storage systems are registered in Hitachi Command Suite.
- The external storage system is connected to one or more external ports of the internal storage system.
- Hitachi Universal Volume Manager (UVM) is installed on the internal storage system.
- Specify the volumes or identify the number and capacity of volumes you are virtualizing.
- Identify the number of external paths between the external and internal storage systems. The maximum number of external paths that can be set is eight.

Procedure

1. From the Actions menu or General Tasks pane, select Virtualize Volumes.
2. From the list, select an external storage system. A storage system is preselected if you selected a storage system from the Storage Systems tree and launched the dialog box.
3. From the list, select an internal storage system.
4. Choose the volumes by clicking one of the following options:
 - Select from existing available volumes: Click Add/Remove Volumes to select from a list of available volumes, then click Add to add them to the Selected Volumes table.
 - Specify number of volumes and volume capacity: From the list, select the No. of Volumes and enter the Volume Capacity. Click Advanced Options to specify drive type, drive speed, RAID level, or parity group in the volume criteria. The storage system will search for volumes that match the criteria.
5. Specify the No. of External Paths per Volume.
6. (Optional) Click **External Path Priority Settings** to configure the external path and increase or decrease external path priority.

7. (Optional) Click **Host Group and LUN Settings** to configure the host group settings and LUN number.

8. (Optional) Click **Internal Volume Configuration** to configure the options for the volume to be virtualized, such as the parity group ID, CLPR, inflow control, LDEV labels, and LDEV IDs.

9. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

10. (Optional) Update the task name and provide a description.

11. (Optional) Expand **Schedule** to specify the task schedule. You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

12. Click **Submit**. If the task is scheduled to run immediately, the process begins.

13. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

When the task completes, the existing volumes are allocated to the internal storage system and virtualized.

Related concepts

- [About virtualizing and unvirtualizing volumes](#) on page 149

Related tasks

- [Unvirtualizing volumes](#) on page 154
- [Installing a software application](#) on page 46

Related references

- [Virtualize Volumes dialog box](#) on page 155

Discovering and virtualizing volumes of an unregistered storage system

Use the port scan and volume discovery functionality to detect external storage system volumes allocated to the external port and then virtualize the available volumes.

Prerequisites

- The internal storage system is discovered in Hitachi Command Suite.
- The internal storage system is the Virtual Storage Platform G1000, Virtual Storage Platform or the Unified Storage VM that has the port scan and volume discovery functionality.
The external storage system is connected to one or more external ports of the internal storage system.

The external mapping volumes are already allocated to the external ports.

Hitachi Universal Volume Manager (UVM) is installed on the internal storage system.

Procedure

1. From the Actions menu or General Tasks pane, select Virtualize Volumes.
2. From the list of external storage systems, select Search new systems/volumes by port scan.
3. From the list, select an internal storage system.
4. Specify the external paths by choosing one of the following options:
 - Click Select newly discovered external paths and continue with step 5.
 - Click Select an existing external path group, select an external path group from the list, and continue with step 7.
5. Click Start Port Scan.
 The external storage is discovered and the port ID and external WWN are displayed.

 Note: Because the external storage is discovered, you can virtualize additional volumes at a later time without doing a port scan, provided that the same external paths are used. If you are virtualizing additional volumes at a later time and not using the same external paths, then you need to use the port scan functionality to discover available external storage volumes.

6. Select an external storage, then choose the external paths to be used for virtualization and click OK.
7. (Optional) Click External Path Priority Settings to configure the external path and increase or decrease external path priority.
8. Click Start Volume Discovery.
 The volumes that can be accessed using the selected external paths are displayed.
9. Review the list of volumes to be virtualized and click OK.
10. (Optional) Click Internal Volume Configuration to configure the options for the volume to be virtualized, such as the parity group ID, CLPR, inflow control, LDEV labels, and LDEV IDs.
11. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
12. (Optional) Update the task name and provide a description.
13. (Optional) Expand Schedule to specify the task schedule.
You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

14. Click **Submit**. If the task is scheduled to run immediately, the process begins.

15. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

When the task completes, the volumes on the discovered external storage system are virtualized and can be managed from HCS.

Related concepts

- [About virtualizing and unvirtualizing volumes](#) on page 149

Related tasks

- [Unvirtualizing volumes](#) on page 154
- [Installing a software application](#) on page 46

Related references

- [Virtualize Volumes dialog box](#) on page 155

Unvirtualizing volumes

When you unvirtualize volumes, virtualized volumes are unmapped from the specified external storage system.

Prerequisites

- Volumes to be unmapped on the storage system are virtualized.

Procedure

1. From the **Actions** menu or **General Tasks** pane, select **Unvirtualize Volumes**.

2. From the list, select an external storage system.

3. From the list, select an internal storage system.

 The parity groups that correspond to the virtualized volumes from the selected external storage system are displayed in the Selected Parity Groups table. Only parity groups that are available to unmap are listed in the table.

4. (Optional) Click **Add/Remove Parity Groups**. In the Selected Parity Groups table, select any external parity groups that you do not want unmapped and click **Remove** to move them to the Existing Parity Groups table. You can select several external parity groups at one time.

5. (Optional) Click **Advanced Options** to configure deleting the host group, releasing LUSE volumes, or deleting volumes.
Note: If the selected external storage system is not a registered storage system, you can unmap volumes only.

6. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

7. (Optional) Update the task name and provide a description.

8. (Optional) Expand **Schedule** to specify the task schedule.

 You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

9. Click **Submit**.

 If the task is scheduled to run immediately, the process begins.

10. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

When the task completes, the volumes on the selected external storage system are unmapped.

Related concepts

- [About virtualizing and unvirtualizing volumes](#) on page 149

Related tasks

- [Virtualizing volumes of a registered storage system](#) on page 151
- [Discovering and virtualizing volumes of an unregistered storage system](#) on page 152

Related references

- [Virtualize Volumes dialog box](#) on page 155

Virtualize Volumes dialog box

Volume virtualization provides the capability to optimize storage services to applications by facilitating movement of data between tiers and migration of data between different generations of technology.

When you enter the minimum required information in a dialog box, the Show Plan button activates to allow you to review the plan. Click the Back button to modify the plan to meet your requirements.

The following table describes the dialog box fields, subfields, and field groups. A **field group** is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double arrow symbol (>>).

As you enter information in a dialog box, if the information is incorrect, errors that include a description of the problem appear at the top of the box.
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the external and internal storage systems</td>
<td>-</td>
<td>External storage system is displayed if you selected a registered storage system and launched the dialog box. If you did not, select an external storage system from the list. From the list of external storage systems, select Search new systems/volumes by port scan to scan ports and discover volumes of unregistered storage systems. From the list of internal storage systems, select the internal storage system that you want to use.</td>
</tr>
<tr>
<td>Start Port Scan</td>
<td></td>
<td>Available when Search new systems/volumes by port scan is selected. Before clicking Start Port Scan, you have the options for specifying the external paths by choosing Select newly discovered external paths or Select an existing external path group.</td>
</tr>
<tr>
<td>Add/Remove External Paths</td>
<td></td>
<td>After the port scan, the discovered external storage is displayed in alphabetical order. The first one is selected by default. The newly discovered external paths between the selected internal and external storage systems are listed. Click Add to add the external paths that you want to virtualize.</td>
</tr>
<tr>
<td>Start Volume Discovery</td>
<td></td>
<td>Click to search for available volumes.</td>
</tr>
<tr>
<td>Select from existing available volumes</td>
<td>-</td>
<td>Select and click Add/Remove Volumes. From the list of available external volumes, select the volume to be allocated to the internal storage system and click Add.</td>
</tr>
<tr>
<td>Specify the number of volumes and volume capacity</td>
<td>-</td>
<td>Specify the Number of Volumes that you are virtualizing. The new volumes will be partitioned on the external storage system and then allocated to the internal storage system. In the Volume Capacity dialog box, enter the storage capacity of the volumes you are virtualizing. Specify the value in MB, GB, or TB. The required capacity is based on the number of volumes and the volume capacity.</td>
</tr>
<tr>
<td>>> Advanced Options (See the following four fields for details)</td>
<td></td>
<td>Click >> Advanced Options to display and configure drive and parity group options.</td>
</tr>
<tr>
<td>Drive type</td>
<td>-</td>
<td>Existing drive type is displayed based on the selected storage system. If multiple drive types are displayed, accept the default or select from the drive type list: Any FC - Fibre channel SAS - Serial Attached SCSI SATA - Serial ATA FMD - Flash module drive SSD - Solid state drive</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Drive speed (RPM) | - | Existing drive speed is displayed based on the selected storage system. If multiple drive speeds are displayed, accept the default of any available speed or select from the drive speed list:
 • Any
 • 15000
 • 10000
 • 7200
 Any is displayed when you can select more than two drive speeds.
 Changing the drive speed (rotational RPM) can change the parity group. |
| RAID level | - | Existing RAID levels are displayed for the external storage system. For example, RAID 0, 1+0, 5, and 6 are valid RAID configurations when 6 drives are available (for example, HUS 100). If the HUS 100 storage system has RAID 5 (3D+1P) parity groups, then RAID 5 (3D+1P) is displayed. The RAID levels change in the dialog box based on the selected storage system and supported RAID levels. |
| Parity Group | Select Parity Group | The parity group. Based on the drive type, drive speed, and RAID level values, an appropriate parity group is selected.
 Select a parity group by clicking Select Parity Group.
 From the list of parity groups, sort and filter columns such as RAID level, unallocated capacity, or other fields to identify the preferred parity groups. |
<p>| No. of External Paths per Volume | - | Select the number of external paths between the external and internal storage systems. The number can be 1 through 8. |
| External Paths | Ext. Storage Port | The port of the connected external storage system. This port is a part of the external storage and used to connect to the internal storage. |
| Controller | | The external storage controller device information. This device controls the transfer of data between an external storage system and an internal storage system. |
| Ext. Storage System | | The connected external storage system. |
| Int. Storage System | | The connected internal storage system. |
| Int. Storage Port | | The port of the connected internal storage system. This port is a part of the internal storage and used to connect to the external storage. |
| Edit External Paths | | Edit external paths from a table or from a graph. To create an external path, select an external storage port and an internal storage port. To delete an external |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>-</td>
<td>path, select the path that you want to delete. Click Clear External Paths.</td>
</tr>
<tr>
<td>External paths</td>
<td>-</td>
<td>External paths can be edited from a table or from a graph. To create an external path, select an external storage port and an internal storage port. To delete an external path, select the path that you want to delete. To delete all paths, click Clear External Paths.</td>
</tr>
<tr>
<td>Port Type (Ext./Int.)</td>
<td>-</td>
<td>The port types of the storage ports of both the external and internal storage systems are displayed.</td>
</tr>
<tr>
<td>>> External Path</td>
<td>(See the following four fields for details)</td>
<td>Click >> External Path Priority Settings to increase or decrease the external path priority.</td>
</tr>
<tr>
<td>Priority Settings</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ext. Storage Port</td>
<td>-</td>
<td>The port for the connected external storage system.</td>
</tr>
<tr>
<td>Int. Storage Port</td>
<td>-</td>
<td>The port for the connected internal storage system.</td>
</tr>
<tr>
<td>Port Type (Ext./Int.)</td>
<td>-</td>
<td>The storage port type of the external path. The port types of the storage ports of both the external and internal storage systems are displayed.</td>
</tr>
<tr>
<td>Increase Priority</td>
<td>-</td>
<td>Increase the priority of the selected external path. The path with the highest priority is the primary path if the external storage system works in a single path mode.</td>
</tr>
<tr>
<td>Decrease Priority</td>
<td>-</td>
<td>Decrease the priority of the selected external path. The path with decreased priority is the alternate path if the external storage system works in a single path mode.</td>
</tr>
<tr>
<td>>> Host Group</td>
<td>(See the following four fields for details)</td>
<td>Volume allocations using Fibre Channel and FCoE prompt for such items as host group name, host mode, host mode options, and LUN number.</td>
</tr>
<tr>
<td>and LUN Settings</td>
<td></td>
<td>To display or hide the following fields, click Host Group and LUN Settings.</td>
</tr>
<tr>
<td>Host group name</td>
<td>-</td>
<td>Specify a host group name for the internal storage system. Paths are allocated from the external storage system to the internal storage system.</td>
</tr>
<tr>
<td>Host Group Settings</td>
<td>-</td>
<td>The host groups to be used during volume allocation or that were previously set during prior volume allocation.</td>
</tr>
<tr>
<td>Options</td>
<td>-</td>
<td>Select one or more host mode options for supporting special requirements for specific applications.</td>
</tr>
<tr>
<td>LU Number (hex)</td>
<td>-</td>
<td>Assign LU numbers to the allocated volumes by entering a Start from number (or using the default). Set LU numbers in ascending order and do not use existing numbers.</td>
</tr>
<tr>
<td>>> Internal</td>
<td>(See the following four fields for details)</td>
<td>Click >> Internal Volume Configuration to display and configure the internal volume options.</td>
</tr>
<tr>
<td>Volume Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity Group</td>
<td>-</td>
<td>Assign internal volumes to a parity group by entering a Start from number. For Device Manager, when you specify the first number (1-16384), the second number is automatically assigned. The format for specifying external parity groups is, for example, "E1" or "E16384".</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>CLPR</td>
<td>-</td>
<td>From the list, select the cache logical partition resource (CLPR) value for the internal volumes.</td>
</tr>
<tr>
<td>Inflow control</td>
<td>-</td>
<td>Select Enable to stop write operations to cache and to stop I/O from the host when the write operations to the external volume fails. Select Disable to write I/O from the host during retry operations to cache memory, even when the writing operation to the external volume fail. When write operations to the external volume returns to normal, all the data in cache memory is written to the external volume. The default is Disable.</td>
</tr>
<tr>
<td>Cache mode</td>
<td>-</td>
<td>Select Enable, after receiving the data into the internal storage system cache memory, the internal storage system signals the host that an I/O operation has completed and then asynchronously writes the data in cache memory to the external storage system. If you select Disable, the internal storage system signals the host that an I/O operation has completed only after the local storage system has synchronously written the data to the external storage system. The default is Enable.</td>
</tr>
<tr>
<td>Resource group</td>
<td>-</td>
<td>Resource groups listed by storage system, parity group, LDEV ID, and storage port. Resource group appears only when multiple resource groups are allocated and each resource group has LDEV IDs of internal volumes that belong to the selected internal storage system.</td>
</tr>
<tr>
<td>Label</td>
<td>-</td>
<td>Volume labels are searchable, and therefore recommended as a way to find volumes. Specify and add a LDEV label.</td>
</tr>
<tr>
<td>Initial value</td>
<td>-</td>
<td>The smallest number of sequential numbers. The Initial value is not required but can be useful for differentiation when virtualizing multiple volumes. For each volume, the number is in ascending order of LDEV ID.</td>
</tr>
<tr>
<td>Reflect these labels to the storage system</td>
<td>-</td>
<td>Reflect these labels to the storage system is checked by default so that naming is consistent between HCS and the storage system. If the selected storage system does not support label setting, this item is not displayed.</td>
</tr>
<tr>
<td>Quorum Disk</td>
<td>-</td>
<td>When virtualizing a Quorum disk for use in a global-active device environment, the Change Internal Volume(s) to Quorum Disk(s) checkbox must be selected. The Remote Storage System is displayed, and the recommended disk ID displayed, but can be changed if necessary.</td>
</tr>
<tr>
<td>LDEV ID</td>
<td>-</td>
<td>LDEV ID options include auto or manual.</td>
</tr>
</tbody>
</table>
Virtualizing storage capacity (HDP/HDT)

This module describes how to virtualize storage capacity.

About virtualizing storage capacity

Hitachi Dynamic Provisioning (HDP) provides virtual volumes to a host and allocates the actual capacity from a HDP pool when a host makes a write request. By using HDP pools, you can allocate more capacity to a host than that allowed by the actual physical configuration of the storage system.

HDP pools provide the following advantages:
- You can reduce system setup and operational costs.
- You can use resources more efficiently.
- You can distribute workload equally among volumes.

Dynamic Tiering (HDT) improves HDP pools storage performance further by taking advantage of performance differences between hardware tiers.

Note: The terms "HDP" and "HDT" are referred to collectively as "DP".

You can create virtual volumes (DP volumes) from physical volumes that are grouped into DP pools. You can then allocate those virtual volumes to hosts.

In the illustration below, note that the volumes used to create the DP pool are called DP pool volumes. The DP pool is then used to provide capacity as needed to allocated DP volumes.
DP pools are created by Device Manager, which automatically selects volumes based on user-specified conditions. Users can also directly specify parity groups to create a DP pool.

Users can also specify settings such as values for the usage rate threshold and reservation threshold.

If you have registered a Tiered Storage Manager license, you can use the Mobility tab to evaluate and analyze the operation status that is related to a DP pool. When you delete an unnecessary DP pool, DP volumes created from that pool are also deleted. For this reason, a prerequisite to deleting a DP pool is that no DP volumes from that pool are allocated to a host.

Tip: For Virtual Storage Platform G1000 storage systems, you can restore DP pools, complete SIMs, and export tier relocation log files by using the windows available by clicking the System GUI link. To access the System GUI link, on the Resources tab, right-click DP Pools for the target storage system, and then select System GUI from the menu. Or, click DP Pools for the target storage system, and then click the System GUI link that appears in the application pane.

For information about how to perform tasks that are available by clicking System GUI, see the Help for the appropriate window, or see the Hitachi Virtual Storage Platform G1000 Provisioning Guide for Open Systems.

For Hitachi Unified Storage (HUS) 100 family of storage systems, the replication data and replication management area, which are used by Copy-on-Write Snapshot or TrueCopy Extended Distance, are stored in the created DP pool.

Related concepts
- Creating a storage operating environment on page 132

Related tasks
- Creating a DP pool on page 162
- Verifying DP pool information on page 168
- Expanding DP pools on page 169
- Shrinking a DP pool on page 171
- Modifying DP pool settings on page 172
- Deleting DP pools on page 172
- Expanding DP volumes on page 173
- Reclaiming zero pages on page 174

Related references
- Create Pool dialog box on page 164
Creating a DP pool

You can create an HDP or HDT pool, which provides more efficient use of physical storage for virtual volumes that are allocated to hosts from the DP pool. DP pool performance can be improved if you use the entire capacity of a parity group for a single DP pool.

Prerequisites

- Register the target storage system.
- When defining an external LDEV tier rank, externally connect a storage system that has multiple performance levels.
- Verify the following when using Hitachi USP V/VM, Virtual Storage Platform, Virtual Storage Platform G1000, or HUS VM for DP pools:
 - Parity groups from which volumes have already been created can be added
 - Drive type characteristics (for example: drive type and drive speed) in parity groups and RAID level
- Verify the following when using Hitachi Unified Storage (HUS) 100 and the Adaptable Modular Storage (AMS) 2000 family of storage systems for DP pools:
 - Drive type and RPM (only drives in which a parity group has not been created can be targets)
 - Parity group RAID level and capacity
 - Number of parity groups

Note: In HDT pools, if different drive types and/or RAID levels are mixed in a single tier, they will all be considered equal for data placement regardless of page access frequency. As a result, I/O performance will be dependent on the drive type characteristics and RAID level on which any given page resides.

Note: In HDP pools, if different drive types and/or RAID levels are mixed in an HDP pool, I/O performance will be dependent on the drive type characteristics and RAID level on which any given page resides.

Procedure

1. On the Resources tab, expand the storage system, list existing DP Pools, and click Create Pool.
2. In the Create Pool dialog box, specify a pool name, and optionally select Reflect this pool name to the storage system.
3. To configure an HDP pool, select a Pool Type of HDP and configure the following:
 a. In the Additional Parity Groups table, click Add Parity Groups.
b. (Optional) Select 'Allow to mix different drive types/speeds, chip types, RAID levels or volume locations' to allow combining resources with different characteristics.

c. Select one or more parity groups, and click Add to Pool and then Close. The Pool Summary information is updated.

d. (Optional) Click Advanced Options to configure Pool ID, Used Threshold, Subscription Thresholds, and DP volume protection options, as needed.

e. Go to step 7.

4. To configure an HDT pool, select a Pool Type of HDT, and then in the Additional Parity Groups table, choose Standard or Mixed mode to disallow or allow combining resources with different characteristics. For Mixed mode, go to step 6.

5. For a Standard mode HDT pool, do the following:

a. Click + to add a new tier.

b. In the Add New Tier dialog box, select a volume to configure Tier 1, and click Select. The Tier Configuration table in Pool Summary is updated.

c. Click Add Parity Groups, select the parity group, click Add to Pool, and click Close. Select an available parity group that best meets your performance or capacity needs (Tier 1 for best performance, Tier 2 for next best performance, and Tier 3 for capacity).

d. (Optional) Click + to add Tier 2 and Tier 3, configure the tiers based on your performance and capacity needs using the choices in Add New Tier dialog box. The Tier Configuration table in Pool Summary is updated.

Tip: To delete an existing tier, click X in the Tier tab.

e. Click Advanced Options to configure Pool ID, Used Threshold, Subscription Thresholds, and DP volume protection options, as needed.

f. Click HDT Options, and configure the tier management options as needed.

g. Go to step 7.

6. For a Mixed mode HDT pool, do the following:

a. Click Add Parity Groups.

Note: There are two parity group tab choices from which you can select: Internal Parity Groups and External Parity Groups (the Internal Parity Groups tab is set by default). If you select the External Parity Groups tab and select one or more parity groups, this enables the External LDEV Tier Rank menu from which you must choose a ranking for the tier.
b. For mixed mode in the **Internal Parity Groups** tab or the **External Parity Groups** tab, select parity groups that you want to add to the HDT pool, click **Add to Pool**, and click **Close**. The Tier Configuration table in Pool Summary shows the new tier configuration status for each tier.

c. Click **Advanced Options** to configure Pool ID, Used Threshold, Subscription Thresholds, and DP volume protection options, as needed.

d. Click **HDT Options**, and configure the tier management options as needed.

e. Go to step 7.

7. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

8. (Optional) Update the task name and provide a description.

9. (Optional) Expand **Schedule** to specify the task schedule. You can schedule the task to run immediately or later. The default setting is **Now**.

10. Click **Submit**. If the task is to run immediately, the task begins.

11. You can check the progress and the result of the task on the **Tasks & Alerts** tab. Click on the task name to view details of the task.

Result

Created pools are added to the target storage system DP Pools list.

Related concepts

- [About virtualizing storage capacity](#) on page 160

Related tasks

- [Verifying DP pool information](#) on page 168
- [Modifying DP pool settings](#) on page 172
- [Deleting DP pools](#) on page 172

Related references

- [Create Pool dialog box](#) on page 164

Create Pool dialog box

Pools can be created for storage systems that support HDP. In addition, HDT pools of differing performance levels can be used to improve application performance.

When you enter the minimum required information in this dialog box, the Show Plan button activates to allow you to review the plan. Click the Back button to modify the plan to meet your requirements.

The following table describes the dialog box fields, subfields, and field groups. A **field group** is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double-arrow symbol (>>).
As you enter information in a dialog box, if the information is incorrect, errors that include a description of the problem appear at the top of the box.

Table 5-4 Create Pool dialog box

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage System</td>
<td>-</td>
<td>Displays the selected storage system name, or prompts you to select the storage system from a list.</td>
</tr>
</tbody>
</table>
| Pool Name | - | Accept the default pool name, or enter a pool name. Do not confuse pool name with pool ID. The pool ID is an assigned number, the pool name is a user-definable value.
Reflect a pool name to the storage system is selected by default, and provides naming consistency between HCS and the storage system. If it is not displayed, it does not apply to the selected storage system. |
| Pool Type | HDP or HDT | If Pool Type with HDP and HDT options is displayed, the selected storage system supports both HDP and HDT. If Pool Type options are not displayed, it means the selected storage system only supports HDP.
Select HDP to create a pool using one or more parity groups.
Select HDT to create a pool using one or more tiers, each with one or more parity groups. The HDT pool type offers two mode option choices, Standard or Mixed, and HDT options can be minimized or expanded at the bottom of the dialog box. |
| Pool Summary | - | Pool Summary information is updated as parity groups are selected (number of parity groups, DP pool capacity, used % (for thresholds 1 and 2), and subscription % (that trigger subscription warnings and limits).
When pools are configured, use Advanced Options to set the Used Thresholds 1 and 2, and the Subscription thresholds for warnings and limits.
For HDP, Pool Configuration displays the physical attributes of the pool, including volume location, drive type, drive speed, chip type, RAID level, number of parity groups, and parity group capacity.
For HDT, Tier Configuration displays the attributes of one or more tiers, including tier number (1-3), volume location (internal/external), drive type, drive speed, chip type, external LDEV tier rank, number of parity groups, and parity group capacity. |
| Additional Parity Groups | - | (Information in the Additional Parity Groups table differs depending on the selected pool type.)
For an HDP pool, this table displays parity group, drive type, drive speed, chip type, RAID level, total capacity, unallocated capacity, free capacity, number of available volumes, external storage system, and external storage model.
For an HDP pool, you can select Allow mixing of different drive types/speeds, chip types, RAID levels, or volume locations to create pools using parity groups with different attributes.
Click Add Parity Groups to add one or more parity groups to a pool, and click Close to review the selected parity groups. Click Remove Parity Groups to remove any parity groups from the list.
For an HDP pool, the Available Parity Groups table lists parity group, drive type, drive speed, chip type, RAID level, total capacity, unallocated capacity, free capacity, number of volumes, CLPR, cache mode, and resource group. |
For an HDT pool, when the Internal Parity Groups tab is selected, the Available Parity Groups table lists parity group, drive type, drive speed, chip type, RAID level, total capacity, unallocated capacity, free capacity, number of volumes, CLPR, cache mode, and resource group. When the External Parity Groups tab is selected, the Available Parity Groups table lists parity group, total capacity, unallocated capacity, free capacity, number of volumes, CLPR, external storage system, external storage model, cache mode, and resource group. If the External Parity Groups tab is selected and you select one or more parity groups, the External LDEV Tier Rank menu is enabled from which you must choose a ranking for the tier.

For an HDT pool, select from two mode option choices; Standard (single drive type/speed, chip type, RAID level, and volume location in a single tier) or Mixed (mixed drive types/speeds, chip types, RAID levels, and/or volume locations in a single tier). The selected mode affects the available parity groups you can add to pools in each tier to best meet your performance or capacity needs (Tier 1 for best performance, Tier 2 for next best performance, and Tier 3 for capacity).

(For Standard mode) Click + to display the Add New Tier dialog box that displays volume location, drive type, drive speed, and external LDEV tier ranking. Select a volume to add to the tier (for example, Internal, SAS, 15000 RPM), and click Select to update Tier Configuration with the selected volume and drive information, and create a Tier 1 tab. On the Tier 1 tab, use Add Parity Groups to add parity groups to this tier. Click + to create Tier 2, and again to create Tier 3.

(For Mixed mode) Click Add Parity Groups, select parity groups from Internal Parity Groups or External Parity Groups tab (for example: select the check box for the title row in Internal Parity Groups, click Add to Pool, and click Close). The Tier Configuration table in Pool Summary displays the new status for each configured tier.

Note the following important items regarding HDT configuration:
- HCS automatically arranges your tiers from highest performance (Tier 1) to lowest performance (Tier 3), regardless of the order used when creating tiers. For example, if Internal, SAS, 15000 is the tier created, but it is the highest performance tier, then Internal, SAS, 15000 is displayed as Tier 1.
- When three tiers are defined, the + tab is no longer displayed because there is a three-tier limit. To delete a tier, click X in the tier tab. When the + tab displays, you can define a new tier. Create new tiers and delete existing tiers as required.

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool ID</td>
<td></td>
<td>Accept the default pool ID number, or choose from the options in the menu. Use Show Pool ID Usage to display pool ID number and names that are currently in use.</td>
</tr>
<tr>
<td>Used Threshold 1</td>
<td></td>
<td>Set the level of physical capacity usage as a percentage (1-100 range) of the physical DP pool capacity. When this threshold is exceeded, it generates an alert, an email, or both. Alerts display on the Dashboard and the Tasks & Alerts tab.</td>
</tr>
<tr>
<td>Used Threshold 2</td>
<td></td>
<td>Same description as above.</td>
</tr>
<tr>
<td>Subscription</td>
<td></td>
<td>Used Threshold 1 and 2 display in the Pool Summary, in both graphic and numeric values.</td>
</tr>
<tr>
<td>Thresholds</td>
<td></td>
<td>(Optional) Select Enabled to set subscription warning and limit thresholds.</td>
</tr>
<tr>
<td>Warning</td>
<td></td>
<td>Exceeding the subscribed warning threshold (as a percentage of DP pool capacity) generates an alert, an email, or both. Warnings are generated when volume allocation from a pool will exceed the warning level, but volume</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>allocation</td>
<td>Allocation is still allowed (this is a soft limit). Alerts display on the Dashboard and the Tasks & Alerts tab.</td>
</tr>
<tr>
<td></td>
<td>Limit</td>
<td>Exceeding the subscribed limit threshold (as a percentage of DP pool capacity) generates an alert, an email, or both. However, if volume allocation will exceed the subscribed limit threshold, volume allocation is not allowed (this is a hard limit). You must either reduce the capacity of the volume you want created, or increase the subscription limit.</td>
</tr>
</tbody>
</table>
| | Protect DP VOL when: | For the VSP G1000 storage system, this option is displayed when:
 • The Data Retention Utility is licensed
 • The storage system microcode version is 80-02-01-XX/XX or later |
| | I/O fails to a full Pool: | Select 'Yes' to prohibit host I/O to one or more DP volumes in a DP pool that is full, where additional free space cannot be assigned. The displayed default (yes or no) is determined by values that have been set for the storage system. |
| | I/O fails to a blocked Pool VOL: | Select 'Yes' to prohibit host I/O to one or more DP volumes when a DP pool volume is blocked. The displayed default (yes or no) is determined by values that have been set for the storage system. |
| | >> HDT Options | (HDT options are only displayed when it is this pool type.) By selecting this option, the storage system automatically starts and stops performance monitoring and tier relocation based on the Cycle time and Monitoring period settings. Cycle time values range from 30 minutes to 24 hours. Monitoring period are user-configurable time periods (for example, 13:00 to 19:00 hours). Continuous and Periodic monitoring modes apply to both the Cycle time and Monitoring period settings (for details, see Continuous Monitoring mode). |
| | Tier management | Selecting this option lets you manually start and stop performance monitoring and tier relocation. |
| | Auto | By selecting this option, the storage system automatically starts and stops performance monitoring and tier relocation based on the Cycle time and Monitoring period settings. |
| | Manual | Selecting this option lets you manually start and stop performance monitoring and tier relocation. |
| | Custom | Selecting this option lets you create performance monitoring and tier relocation plans using templates with different types of performance monitoring and tier relocation settings. You can create and delete templates by name, set up monitoring periods (up to 7 days a week), set up relocation start times (up to 7 days a week), and view these plans in the Schedule Summary table. You can modify templates to meet specific needs. In addition, click Pools using this template to assign a template to any pool that you select from the Pools table. |
| | Monitoring mode | Continuous monitoring mode uses weighted-average performance data gathered over several monitoring cycles so that tier relocation does not respond immediately to workload changes (see Cycle time). This mode prevents overreaction to workload changes, that might otherwise result in unnecessary tier relocation I/O. |

Provisioning storage
Hitachi Command Suite User Guide
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring mode</td>
<td>Periodic</td>
<td>Periodic monitoring mode uses performance data from the last monitoring cycle (see Cycle time). Tier relocation responds immediately to workload changes. This mode is a more aggressive tier relocation monitoring mode.</td>
</tr>
<tr>
<td>Relocation Speed</td>
<td></td>
<td>For the VSP G1000, you can select one of five speeds for the relocation of pages in a pool, in a unit of time, from 1 (slowest) to 5 (fastest). The default is 3 (standard). To reduce the load on the storage system, specify a slower page relocation speed. To give a higher priority to page relocations for the pool, specify a faster relocation speed.</td>
</tr>
<tr>
<td>Buffer Space for</td>
<td>New page</td>
<td>Sets the buffer space used for new page assignments to HDT tiers (using the default values is recommended).</td>
</tr>
<tr>
<td>Tier relocation</td>
<td></td>
<td>Sets the buffer space used for tier page relocations between HDT tiers (using the default values is recommended).</td>
</tr>
</tbody>
</table>

Note: After configuring the pools, click Show Plan and perform all of the confirming, scheduling, and submitting tasks needed to create the pools.

Related concepts
- [About virtualizing storage capacity](#) on page 160

Related tasks
- [Creating a DP pool](#) on page 162
- [Changing an access attribute to read/write](#) on page 174

Verifying DP pool information

You can check the DP pools summary information to verify the current number of pools, the virtual volume capacity, the pools usage, and the total and used pool capacity.

Prerequisites
- Create pools
- Discover (register) pools

Procedure

1. On the Resources tab, select **DP Pools** under the target storage system.
 - A list of DP pools, (DP pool volumes and DP volumes) provides summary information that includes the number of pools, the virtual volume capacity, pool usage, and the total and used pool capacity.
2. Select a DP pool to display more detailed information about that pool.
 - Use the detailed pools information to verify expected changes in capacity or performance. Configuration information for each DP volume is displayed by clicking the volume link from the list in the **DP Vols** tab.
If you configured HDT pool tiers to be managed automatically using Element Manager, you can also verify the following:

- Monitoring Information
- Last Monitoring Start Date
- Last Monitoring End Date
- Monitoring Status
- Relocation Status
- Relocation Progress (%)

Related concepts

- [About virtualizing storage capacity](#) on page 160

Related tasks

- [Creating a DP pool](#) on page 162

Expanding DP pools

Pool capacity can be increased by expanding DP pools or by converting HDP pools into HDT pools.

Expand a DP pool by adding volumes to it. Expand an existing HDP pool by converting it into an HDT pool, which changes the pool type and allows you to configure tiers that support a mix of drive types and RAID levels.

Prerequisites

- Register the storage system.
- Verify the external connections for any storage system with multiple performance levels before defining an external LDEV tier rank.
- Verify that when using Hitachi USP V/VM, Virtual Storage Platform, Virtual Storage Platform G1000, or HUS VM for DP pools:
 - Parity groups from which volumes have already been created can be added
 - Drive type characteristics (for example: drive type and drive speed) in parity groups and RAID level
- Verify the following when using HUS 100 or Hitachi AMS 2000 family of storage systems for DP pools:
 - Parity group capacity to add
 - Number of parity groups to add
 - There are drives in which a parity group has not been created

Note: In HDT pools, if different drive types and/or RAID levels are mixed in a single tier, they will all be considered equal for data placement regardless of page access frequency. As a result, I/O performance will be dependent on the drive type characteristics and RAID level on which any given page resides.
Note: In HDP pools, if different drive types and/or RAID levels are mixed in an HDP pool, I/O performance will be dependent on the drive type characteristics and RAID level on which any given page resides.

Procedure

1. On the **Resources** tab, expand the storage systems, select an HDP pool on the target storage system, and click **Expand Pool**.
2. To expand an HDP pool:
 a. In Additional Parity Groups, click **Add Parity Groups**.
 b. Select one or more parity groups, click **Add to Pool**, and then click **Close**. The Pool Summary is updated.

Tip: To change an existing HDP pool into an HDT pool, click **Changes to an HDT pool**.

3. To expand an HDT pool, in Additional Parity Groups, choose **Standard** or **Mixed** mode.
 For **Standard** mode (single drive type/speed, chip type, RAID level, and volume location in a single tier):
 - Tier 1 is the default, click **Add Parity Groups**, select the parity group, click **Add to Pool**, and click **Close**. Select an available parity group that best meets your performance or capacity needs (Tier 1 for best performance, Tier 2 for next best performance, and Tier 3 for capacity).
 - (Optional) Click + to add Tier 2 and Tier 3, configure the tiers based on your performance or capacity needs from volume choices in the **Add New Tier** dialog box. The Tier Configuration table in Pool Summary is updated.

Tip: To delete an existing tier, click **X** in the **Tier** tab.

For **Mixed** mode (mixed drive types/speeds, chip types, RAID levels, and/or volume locations in a single tier):
 - Click **Add Parity Groups**.

Note: There are two parity group tab choices from which you can select: **Internal Parity Groups** and **External Parity Groups** (the **Internal Parity Groups** tab is set by default). If you select the **External Parity Groups** tab and select one or more parity groups, this enables the **External LDEV Tier Rank** menu from which you must choose a ranking for the tier.

 - For mixed mode in the **Internal Parity Groups** tab or the **External Parity Groups** tab, select parity groups that you want to add to the
HDT pool, click Add to Pool, and click Close. The Tier Configuration table in Pool Summary shows the new tier configuration status for each tier.

4. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

5. (Optional) Update the task name and provide a description.

6. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later. The default setting is Now. If scheduled for Now, select View task status to monitor the task after it is submitted.

7. Click Submit. If the task is to run immediately, the task begins.

8. You can check the progress and the result of the task on the Tasks & Alerts tab. Click on the task name to view details of the task.

Result
When the task is complete, the DP pools are expanded. You can verify the updated information on the DP Pools list.

Related concepts
- About virtualizing storage capacity on page 160

Related tasks
- Shrinking a DP pool on page 171
- Expanding DP volumes on page 173
- Reclaiming zero pages on page 174

Shrinking a DP pool
Shrinking a DP pool allows the recovery of excess free capacity.

Procedure
1. On the Resources tab, select Storage Systems in the navigation tree.
2. Expand the tree for the target storage system that includes the DP pool you want to shrink, and select it in DP Pools.
3. In the DP Pool Vols tab, select DP pool volumes, and then click Shrink Pool.
4. Review the plan and specify additional information, as appropriate:
 - Verify the information that is displayed.
 - Enter a name in Task Name.
 - Specify when to execute the task.
5. Click Submit.
 The plan is registered as a task.
6. On the Tasks & Alerts tab, confirm that the task completed.
7. In the Storage Systems tree, return to the target storage system, click DP Pools, and confirm that the information is updated.
Modifying DP pool settings

After setting up a DP pool, you can modify DP pool settings.

Procedure

1. On the Resources tab, select DP Pools under the target storage system.
2. From the list of DP pools, select the pool you want to modify and click Edit Pool.
3. Modify the settings as appropriate and click Submit.
4. On the Tasks & Alerts tab, confirm that all tasks are completed.
5. In the Storage Systems tree, return to the target storage system and click DP Pools to confirm that the information is updated.

Deleting DP pools

After unallocating the DP volumes belonging to a DP pool, you can delete the DP pool.

Note: When you remove an encrypted DP pool in HUS 150 systems, this cancels the encryption for all drives that comprise the target DP pool, and releases the encryption on all DP pool volumes in the DP pool.

Prerequisites

Before you delete DP pools, first unallocate the DP volumes that belong to the DP pools to be deleted.

Note: When you delete a DP pool, HCS automatically performs an immediate quick format only on those volumes that were DP pool volumes, but became basic volumes because the associated DP pools were deleted. This allows these basic volumes to be used again. A best practice for deleting a pool is to run this task when system activity is low and major system operations are not running.
Procedure

1. On the **Resources** tab, select **Storage Systems**.
2. Expand the tree, select the target storage system, and select **DP Pools**.
3. From the list of pools, select one or more target DP pools to delete, and click **Delete Pools**.
4. In the **Delete Pool** dialog box, confirm that the information matches the DP pools to be deleted. Optionally, update the task name and provide a description.
5. Click **Submit**.
 The delete DP pools process begins.
6. You can check the progress and the result of the delete DP pools task on the **Tasks & Alerts** tab
 Verify the results for each task by viewing the details of the task.

Result

The deleted DP pool no longer appears in the DP pool list for the target storage system.

Related concepts

- [About virtualizing storage capacity](#) on page 160

Related tasks

- [Creating a DP pool](#) on page 162

Related references

- [Notes on performing quick formats](#) on page 140

Expanding DP volumes

You can expand the size of a DP volume to expand its capacity.

Procedure

1. On the **Resources** tab, select **Storage Systems** in the navigation tree.
2. Expand the tree for the target storage system that includes the pool you want to modify, and select the DP pool in **DP Pools**.
3. On the **DP Vols** tab, select one or more volumes you want to expand and click **Expand DP Volume**.
4. Specify the new capacity for the volume.
5. Click **Submit**.
6. On the **Tasks & Alerts** tab, confirm that all tasks are completed.
7. In the **Storage Systems** tree, return to the target storage system, click the target DP pool and view the **DP Vols** tab to confirm that the information is updated.
Reclaiming zero pages

Reclaiming unused zero pages for a DP pool releases unused capacity.

Procedure

1. On the Resources tab, select Storage Systems in the navigation tree.
2. Expand the tree for the target storage system that includes the appropriate DP pool, and select the DP pool in DP Pools.
3. On the DP Vols tab, select one or more volumes and click Reclaim Zero Pages.
4. Click Submit.
5. In the task list, confirm that the task is completed.

Changing an access attribute to read/write

Prerequisites

Before changing the access attribute from read-only or protect to read/write, considering the following:

- Do not assign an access attribute to a volume if any job is manipulating data on the volume. If you assign an access attribute to such a volume, the job will possibly end abnormally.
- Make sure that the retention term is expired. If expired, the Retention Term column in the Data Retention window shows 0. To change the access attribute to read/write within the retention term, contact customer support.
- Make sure that Expiration Lock indicates Disable > Enable. If it indicates Enable > Disable, changing to read/write is restricted by an administrator for some reason. Contact the administrator of your system to ask if you can change the access attribute.

See the Hitachi Virtual Storage Platform G1000 Provisioning Guide for Open Systems.
Procedure

1. On the Resources tab, expand the Storage Systems tree, right-click the target storage system, and then select Other Functions.
2. Click Actions > Other Functions > Data Retention to open the Data Retention window.

3. Click ☑️ to change to modify mode.
4. Select an LDKC number in the LDKC list, select a group that the CU belongs to in the CU Group list, and then click a CU in the tree.
5. Right-click a volume for which you want to change access attributes. You can select multiple volumes, select Attribute, and then click Read/Write.
6. Click Apply to apply the setting.

Related references

- Create Pool dialog box on page 164

Virtualizing storage tiers (HDT)

This module describes how to manage data relocation for HDT volumes.

About virtualizing storage tiers

Dynamic Tiering functionality lets you configure the monitoring frequency modes at which data is accessed and relocate that data in a specific pool and tier based on the results.

For example, you might create a pool that combines volumes having different cost performances, such as combining high-speed volumes (SSD, FMD, or SAS) with inexpensive low-speed volumes (SATA). The data in this pool is then automatically relocated among the volumes depending on the I/O load:

- High-load pages are allocated to high-speed volumes
- Low-load pages are allocated to low-speed volumes

By using Hitachi Command Suite, you can fine-tune settings related to the monitoring of HDT pools and data relocation depending on operating conditions.

You can configure a tiering policy in an HDT pool so that parity groups are assigned to specific tiers (Tier 1, Tier 2, and Tier 3) to take advantage of drive types, drive speeds, chip types, and RAID levels to optimize your performance and capacity needs. Tiering allows data in a host volume to be spread across multiple tiers (Tier 1 for high-speed, Tier 2 for next highest speed, and Tier 3 for additional capacity independent of drive type or RAID level), which provides the flexibility to specify settings that address your business conditions or the characteristics of certain applications. Tiering
allows you to optimize data placement, improve volume performance, and reduce costs through more effective use of your resources.

HDT settings that can be specified using HCS include:

- Monitoring HDT pools and relocating data
 Monitoring and data relocation can be configured to run automatically by specifying a time or interval in advance, or you can manually monitor and relocate data as required. For a VSP G1000, a data relocation speed can be set. For example, using a slower relocation speed will reduce the impact of relocation on other I/O requests.

- Specifying the buffer space for HDT pools
 When HDT pools are created or edited, on each hardware tier you can specify a ratio corresponding to the buffer space for new page assignment (an area reserved for increasing used capacity). Similarly, you can specify a ratio corresponding to the buffer space for tier relocation (a working area reserved for the storage system to use when relocating data). However, be aware that changing the default values might degrade performance.

- Applying a tiering policy and setting priority to HDT volumes
 You can regulate tiering to balance performance and cost, such as by preventing more data than is necessary from being placed in a fast hardware tier and thereby reducing management costs. After these settings are configured, regularly review the status of the settings of that tiering policy and the amount of capacity in use by each hardware tier to verify that resources are being appropriately allocated. Configuration settings can be changed any time if costs increase or performance is lower than expected.

 In an HDT pool, data with a high frequency of I/O operations is automatically preferentially placed in a high-speed hardware tier. Configure the following settings to control data placement, ensuring that important data is placed in a fast hardware tier, according to your business requirements.

 ○ Apply a tiering policy
 To ensure that data with high importance but with few I/O operations is placed in a hardware tier that maintains a certain speed at all times, you can specify the target hardware tier. You can also apply a tiering policy to HDT volumes that determines the capacity ratio of each hardware tier, by defining such a policy in advance.

 ○ Specify a new page assignment tier
 When HDT volumes are created or allocated, specify which hardware tier the new page of an HDT volume will be assigned with priority. Among the hardware tiers defined by a tiering policy, specify High for an upper-level hardware tier, Middle for a medium-level hardware tier, and Low for a low-level hardware tier.

 ○ Set relocation priority
When HDT volumes are created or allocated, specify whether to prioritize relocation of the data of the target HDT volumes.

- Editing a tier rank for an external HDT pool volume
 When an external volume is included in an HDT pool volume that is one of the volumes making up an HDT pool, you can define the external LDEV tier rank (high, medium, or low) according to the performance.

A registered Tiered Storage Manager license enables the following:

- Evaluating and analyzing the operation status of HDT pools
 Use the Mobility tab to evaluate and analyze the operation status that is related to an HDT pool.

- Setting a schedule for relocating data and monitoring HDT pools
 Register the time of HDT pool monitoring and data replacement as a template schedule.

- Editing tier relocation for HDT volumes (preventing relocation by volume)
 Specify whether data can be relocated for each HDT volume. Tier relocation can be controlled according to the characteristics and operating status of applications using HDT volumes, such as by preventing other applications from relocating data of the volumes they are using when there is an application for which data relocation takes a high priority.

- Restoring a data placement by applying a data placement profile of HDT volumes
 Restore a previous data placement by saving data placements of optimized HDT volumes per page as profiles, and applying them according to operation. For example, if an HDT volume is being used for multiple operations that have different access characteristics (such as online and batch processing), you can create data placement profiles that fit the different processes and apply the appropriate profile before beginning processing. By doing so, you can restore a data placement that fits the characteristics of the target processing in advance, which prevents I/O performance from dropping. In addition, by setting up a schedule, you can update and apply profiles at regular intervals to suit the operation of applications. Profiles are applied only to pages placed in Tier 1 of HDT pools.

Related concepts

- Creating a storage operating environment on page 132

Related tasks

- Manually starting or stopping the monitoring of HDT pools on page 178
- Manually starting or stopping the tier relocation of an HDT pool on page 178
- Scheduling monitoring and tier relocation of HDT pools on page 179
- Editing tier relocation for HDT volumes on page 180
- Applying a tiering policy to HDT volumes on page 180
- Customizing a tiering policy for HDT volumes on page 181
Manually starting or stopping the monitoring of HDT pools

You can start or stop monitoring of an HDT pool manually.

Prerequisites

A Tiered Storage Manager license is required to perform the operation from the Mobility tab.

After confirming that the HDT pools setting for Tier Management is set to Manual or Custom, you can start or stop monitoring of an HDT pool.

Procedure

1. From the tree view in the Resources tab, select Storage Systems (or use the Mobility tab).
2. Expand the tree and select DP Pools under the target storage system.
3. Select one or more HDT pools and click either the Start Monitoring or Stop Monitoring button, both found in the More Actions menu.
4. Set the desired items and execute the task.
5. View the list of tasks to check execution results.
6. Click the link for the task name and check that monitoring of each HDT pool has started or stopped.

Related concepts

- About virtualizing storage tiers on page 175

Manually starting or stopping the tier relocation of an HDT pool

You can manually start or stop tier relocation of an HDT pool.

Prerequisites

A Tiered Storage Manager license is required to perform the operation from the Mobility tab.

After confirming the following, you can start relocation of an HDT pool:

- Existence of two or more hardware tiers in the target HDT pools
- The HDT pools setting for Tier Management is Manual or Custom
To stop relocation of an HDT pool, confirm:
• The HDT pool setting for Tier Management is Manual or Custom

Procedure
1. From the tree view in the Resources tab, select Storage Systems (or use the Mobility tab).
2. Expand the tree and select DP Pools under the target storage system.
3. Select one or more HDT pools and click either the Start Relocation or Stop Relocation button.
4. Set the desired items and execute the task.
5. View the list of tasks to make sure that all tasks have completed.
6. Click the link for the task name and check that tier relocation of each HDT pool has started or stopped.

Related concepts
• About virtualizing storage tiers on page 175

Scheduling monitoring and tier relocation of HDT pools
You can specify the schedule for monitoring and relocating HDT pools.

Prerequisites
A Tiered Storage Manager license must be registered.

Procedure
1. From the Mobility tab, select DP Pools.
2. Expand the tree view and select the target storage system. From the list of DP pools, select the HDT pool for which the schedule is to be set.
3. On the Summary panel, click Actions, and select Edit Pool.
4. In the Edit Pool dialog box, click HDT Settings. In Tier Management select the Custom radio button. Click Select Template to use an existing schedule template, or click Create Template to create a new schedule template.
5. Specify the necessary items by following the instructions in the window and create and execute the plan.
6. View a list of tasks to make sure that all tasks completed.
7. In the Mobility tab select the HDT pool. Then from Tier Management in Summary confirm the template names.

Related concepts
• About virtualizing storage tiers on page 175
• About data mobility on page 324
Editing tier relocation for HDT volumes

There are conditions where it is useful to disable tier relocation of volumes to prevent unnecessary data movement. For example, to preferentially perform tier relocation of volumes whose I/O activity varies greatly, and suppress tier relocation of other volumes.

Prerequisites

A Tiered Storage Manager license must be registered.

Procedure

1. Click the **Mobility** tab, and select **Logical Groups** in the navigation pane.

 Logical Groups can contain both **Public Logical Groups** and **Private Logical Groups**. You can discover and register not only at the logical group level, but also at the host or HDT volume level.

 Note: If you want to register by host, you can start this process by selecting the **Resources** tab.

2. Expand the tree to select the target logical group from **Public Logical Groups** or **Private Logical Groups**.

3. If you want to set all HDT volumes in the logical group at the same time, select **Actions** located in the corner of the application pane, then **Edit Tier Relocation**. If you want to specify the target volumes, select one or more HDT volumes from the list of volumes, and then click the **Edit Tier Relocation** button.

4. Select **Enable** to enable tier relocation for HDT volumes. Select **Disable** to disable tier relocation.

5. Set any required items in the window, and then execute the task.

6. Verify that the task completed.

Result

The applied tier location settings can be checked from Summary or the list of volumes, which are displayed by selecting a logical group from the Mobility tab.

Related concepts

- [About virtualizing storage tiers](#) on page 175

Applying a tiering policy to HDT volumes

Prerequisites

- Two or more hardware tiers must exist in an HDT pool.
• If selecting multiple HDT volumes from a logical group, all selected HDT volumes must belong to the same HDT pool.
• A Tiered Storage Manager license is required to perform operations from the Mobility tab.

Procedure

1. From the tree view in the **Resources** tab, select **Storage Systems**.
 You can also perform this step from the **Mobility** tab.
 If editing from logical groups, perform this step from the **Mobility** tab.
2. Expand the tree and select the target HDT pools.
3. Select one or more HDT volumes from the list of volumes on the **DP Vols** tab, and then click **Edit Tiering Policy**.
4. Select the tiering policy, and then execute the task.
 You can schedule the task to be executed later.
5. View the list of tasks to make sure that all tasks are complete.

Result
The tiering policy is applied.

Tip: The capacity ratio of Tier 1 might exceed the value specified for the maximum allocation threshold if a data placement profile and a tiering policy are being used concurrently.

Related concepts

- **About virtualizing storage tiers** on page 175

Customizing a tiering policy for HDT volumes

You can set the value for the allocation threshold of a hardware tier. When a tiering policy is specified for HDT volumes, make sure changing the definition will not cause a problem.

Prerequisites

- A Tiered Storage Manager license must be registered to perform this task from the Mobility tab.
- Verify the tiering policy to be changed.

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree.
 Note that you can also update tiering policies on the **Mobility** tab.
2. For the applicable storage system, select **DP Pools**.
3. On the **Tiering Policies** tab, select a tiering policy to change, and click **Customize Tiering Policy**.
4. Specify the required items, and then submit the task.
5. After the task is complete, on the Resources tab, select DP Pools.
6. On the Tiering Policies tab, select the tiering policy you changed to verify that the can verify the changes.

Result
The tiering policy is updated.

Related concepts
- About virtualizing storage tiers on page 175

Notes on data placement profiles for HDT volumes
When using data placement profiles for HDT volumes, it is useful to understand the following:
- Data placement profiles are applied only to pages placed in Tier 1 of HDT pools.
- For pages to which both a data placement profile and tiering policy are set, the settings of the profile are prioritized.
- After a data placement profile has been applied and monitoring and data relocation of HDT pools has been performed, a data placement is restored. Therefore, users need to determine the timing at which to apply a profile by taking into account the period during which the monitoring and data relocation are performed.
- When performing a create, update, apply, or release of a data placement profile, or when searching for or repairing an inconsistency in a data placement profile, users cannot perform other operations for the target storage system.
- A task to create, update, apply, or release a data placement profile or to search for or repair an inconsistency in a data placement profile takes time to complete after it is executed. This time might affect other operations, so make a plan based on the displayed time estimate. Keep in mind that the larger the number of target volumes, the more likely that the estimated time and the actual execution time will differ greatly. You can also stop tasks that are being executed, and then restart them.
- Regardless of the allocated resource groups, data placement profiles created by another user can also referenced in the list of profiles. However, operation that can be performed on such profiles are restricted based on the allocated resource group and role.
- If the number of managed data placement profiles exceeds 200, displaying the profile list might take some time. In this case, set the [Rows/page] of the profile list to no more than 100.
- When the operations listed below are performed, users need to perform a search inconsistency operation from the Refresh Storage Systems dialog because the profile that is actually applied to the volume in a storage...
system might not match the profile information that can be referenced from Hitachi Command Suite.
○ When the Hitachi Command Suite database was overwritten, due to an import or restoration, while the applied profile existed.
○ When the storage system that contains an applied profile is deleted, and the storage system is re-registered.

Tip: If inconsistencies are detected, a message will be displayed in Manage Data Placement Profiles dialog. From the link shown in the message, perform the repair inconsistencies operation and release the profile. This can avoid unintended data to be fixed into a high-speed hardware tier by a profile that was applied in the past.

Related concepts
• About virtualizing storage tiers on page 175

Creating a data placement profile for HDT volumes

To restore a data replacement appropriate for application processing, the user creates a data placement profile when HDT volumes provide sufficient performance. A profile can be created for each logical group, and is managed with the corresponding logical group.

Prerequisites
• A Tiered Storage Manager license must be registered
• Gather the name of the target logical group
• Specify settings for checking performance information, such as settings for linking to Hitachi Tuning Manager, or settings for the performance monitoring software of each application.

Tip: If linked to Hitachi Tuning Manager, you can view performance trend charts for the volumes in the logical group from the Manage Data Placement Profiles dialog box. For details on the linking method, see the Hitachi Command Suite Administrator Guide.

Procedure
1. From the Mobility tab, General Tasks pane, select Manage Data Placement Profiles.
2. Click the Logical Group View button, and specify the necessary items. Check the performance of the target logical group by using the performance trend charts or software for checking performance information, and then click the Create Profile button.
3. To create a plan, specify the necessary items by following the instructions in the window.
4. If there is no problem with the plan, execute it.
5. View the list of tasks to see the execution results.

Result

The created profile can be checked in the list of profiles displayed by clicking the Logical Group View button in the Manage Data Placement Profiles dialog box.

Tip: To delete data placement profiles, select the data placement profiles to be deleted, and click Delete Profiles.

Note: Regardless of the allocated resource groups, data placement profiles created by another user can also be referenced in the list of profiles. However, operations that can be performed on such profiles are restricted based on the allocated resource group and role. Therefore, specify profile names and descriptions to make it clear which operations are available.

Related concepts

- [About virtualizing storage tiers](#) on page 175

Updating a data placement profile for HDT volumes

You can update an existing data placement profile to reflect the latest HDT volume data placement in the profile.

Tip: To change the target HDT volumes of a profile due to changes in the logical group configuration or other reasons, re-create the profile.

Prerequisites

- Register a Tiered Storage Manager license.
- Determine the name of the target logical group.
- Specify settings for checking performance information, such as settings for linking to Hitachi Tuning Manager, or settings for the performance monitoring software of each application.

Tip: If linked to Hitachi Tuning Manager, you can view performance trend charts for the volumes in the logical group from the Manage Data Placement Profiles dialog box. For details on the linking method, see the [Hitachi Command Suite Administrator Guide](#).

Procedure

1. From the Mobility tab, General Tasks pane, select Manage Data Placement Profiles.
2. Click the Logical Group View button, specify the necessary items. Check the performance of the target logical group by using the performance trend charts or software for checking performance.
information, select the row of the profile to be updated (only one profile can be selected) from the list of data placement profiles, and then click the **Update Profile** button.

3. To create a plan, specify the necessary items by following the instructions in the window.

4. If there is no problem with the plan, execute it.

5. View the list of tasks to see the execution results.

Result

The updated profile information can be viewed from the profile operation history list, which is displayed by clicking the Logical Group View button in the Manage Data Placement Profiles dialog box.

Tip: When you want to periodically update the profile according to the intervals for monitoring HDT pools and replacing data, you can set a schedule for updates by using the Schedule Profiles button. Also, When an applied profile is updated, the profile in a condition before the update will continue to be used until the updated profile is reapplied.

Related concepts

- [About virtualizing storage tiers](#) on page 175

Editing a data placement profile for HDT volumes

You can change the name and description of an existing data placement profile.

Prerequisites

A Tiered Storage Manager license must be registered.

Procedure

1. From the **Mobility** tab, **General Tasks** pane, select **Manage Data Placement Profiles**.

2. Click **Overall Profile View** or **Logical Group View**, select the row of the profile to be edited from the list of data placement profiles (only one profile can be selected), and then click **Edit Profile**.

3. Edit the necessary items and submit the task.

Result

When the task completes, the data placement profile is updated.

Related concepts

- [About virtualizing storage tiers](#) on page 175
Applying a data placement profile for HDT volumes

Before beginning application processing, apply a data placement profile to restore a data placement that fits the characteristics of the processing. After confirming that the data placement is restored and performance is improved, release the applied profile to return to normal HDT operation.

Tip:
- To apply or release the profile periodically to match the application operations, click Schedule Profiles to schedule when to apply and release the profile. When you apply the profile, you can also specify a release schedule.
- The capacity ratio of Tier 1 might exceed the value specified for the maximum allocation threshold if a data placement profile and a tiering policy are being used concurrently.

Prerequisites
- A Tiered Storage Manager license must be registered
- A data placement profile must be created
- Gather the name of the target logical group
- Specify settings for checking performance information, such as settings for linking to Hitachi Tuning Manager, or settings for the performance monitoring software of each application

Tip: If linked to Hitachi Tuning Manager, you can view performance trend charts for the volumes in the logical group from the Manage Data Placement Profiles dialog box. For details on the linking method, see the Hitachi Command Suite Administrator Guide.

Procedure

1. On the Mobility tab, General Tasks pane, select Manage Data Placement Profiles.
2. Click the Overall Profile View button, or Logical Group View button, to view the creation date, usage, and effect of applying profiles in the past, and select the row of the profile to be applied (only one profile can be selected) from the list of data placement profiles, and then click the Apply Profile button.
3. To create a plan, specify the necessary items by following the instructions in the window.
4. If there is no problem with the plan, execute it.
5. View the list of tasks to see the execution results.

After the monitoring and data relocation of HDT pools finish, perform the following operations to check the effect of applying the profile, and to release the applied profile.
6. Using the software for checking the performance information, check the effects of applying the profiles. If linked with Hitachi Tuning Manager, from the Manage Data Placement Profiles dialog box, click Logical Group View to check the performance trend chart of the target logical group.

7. To return to normal HDT pools operation, click Release Profile, specify the necessary items, and then release the applied profile.

Related concepts
- About virtualizing storage tiers on page 175

Scheduling data placement profiles for HDT volumes

You can set weekly or monthly schedules for applying, releasing, and updating data placement profiles.

Tip: If multiple operation schedules are registered for a single logical group, the task list displays the operation that will be executed first. For example, if a schedule to apply a profile is set followed by a schedule to release the profile, then the application task is displayed until the profile is applied. After the profile is applied, the task to release the profile is displayed.

Prerequisites
- Register a Tiered Storage Manager license.
- Create a data placement profile.
- Identify the name of the target logical group.

Procedure
1. On the Mobility tab, select General Tasks, then select Manage Data Placement Profiles.
2. Click the Overall Profile View button, or Logical Group View button, then click the Schedule Profiles button.
3. To create a plan, specify the necessary items by following the instructions in the window.
4. If there is no problem with the plan, submit it.
5. View the list of tasks to make sure that the operation for which a schedule is set is registered as a task.

Related concepts
- About virtualizing storage tiers on page 175

Editing an external LDEV tiering rank for an HDT pool

You can edit the external LDEV tiering rank (Low/Medium/High) for a pool volume.
Prerequisites

- Virtualize sufficient storage.
- Define hardware tiers that consist of external volumes.
- Connect the external storage system.

Procedure

1. On the Resources tab, select Storage Systems, and then select the target DP Pools.
2. Select the target HDT pool, and click the DP Pool Vols tab.
3. Select the target HDT pool volume the DP Pools Vols list, and then click Edit External LDEV Tier Rank.
4. In the External LDEV Tier Rank menu, change the tier ranking (Low/Middle/High) to a different value.
5. (Optional) Update the task name and provide a description.
6. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later, The default setting is Now. If scheduled for Now, select View task status to monitor the task after it is submitted.
7. Click Submit. If the task is to run immediately, the task begins.
8. You can check the progress and the result of the task on the Tasks & Alerts tab. Click on the task name to view details of the task.

Result

The external LDEV tiering rank for the HDT pool volume has been changed on the target storage system.

Related concepts

- About virtualizing storage tiers on page 175

Allocating and unallocating volumes

This module describes volume allocation, provides information about volume allocation requirements, describes multiple ways in which you can allocate volumes, and provides related procedures for allocating volumes and editing volume or host access.

About allocating volumes

Volume allocation makes storage capacity available to host applications and file servers. Hosts and file servers must already be registered before volume allocation.

Depending on your registered storage systems, volumes can be allocated using basic volumes, pool volumes, or volumes from a tier. Basic volumes are volumes from a parity group. Any storage system can provide basic volumes. Allocating DP pool volumes involves grouping resources on storage systems
that support this feature. DP pools must exist prior to volume allocation from a DP pool. To allocate volumes from a tier, a Tiered Storage Manager license is required, and tier policies must be established for storage systems that support tier policy configuration.

The following rules and behaviors apply when allocating volumes:

- Settings that are assigned when allocating volumes to a host become the default settings for the next time you allocate a volume to the same host. You can change these settings during volume allocation.
- If a variety of volumes with different characteristics have been allocated to a host, when you allocate a new volume, you can select an existing volume to set the volume allocation criteria.
- When allocating a volume, if no volumes match the specified requirements, new volumes are created from unused capacity and allocated to the host. When a basic volume is created, the volume is also formatted at the same time.
- You can use keyword or criteria-based searches to find existing unallocated volumes that meet your requirements.
- When you allocate volumes to a host, LUN paths are assigned automatically.
- Volumes can be allocated on ports where LUN security is not enabled. All hosts with access to the port can access the volume.
- Volume allocation to a clustered host should be done by using logical groups. Using logical groups ensures that the same volumes are allocated to all hosts in the cluster.
- Volume allocation is not complete until you approve the volume allocation plan and submit the volume allocation task.
- When volumes are allocated to a host OS, you must create a file system on them and mount them, before they can be used by host applications.
- When you are linking with Hitachi NAS Platform v11.3 or later and volumes are allocated for creating or expanding storage pools, it is recommended that you allocate volumes using the Create Storage Pool or Expand Storage Pool dialog boxes. Device Manager can automatically specify a volume and path configuration for allocating volumes that follows the best practices for configuring storage pools.
- When volumes are allocated to a Hitachi NAS Platform F or Hitachi Data Ingestor, and Hitachi File Services Manager v3.2 is installed, you can create a file system and allocate the volume by using the Create File System dialog box.

Note: Before allocating volumes, review the available volume allocation methods. Understanding the available starting points for volume allocation
will enable you to perform volume allocation in a way that best suits your requirements, and will help you understand the Allocate Volumes dialog box and the Define Clustered-Host Storage dialog box.

Related concepts
- Allocating storage on page 133

Related tasks
- Allocating volumes to selected file servers on page 194

Related references
- Prerequisites for allocating volumes on page 192
- Notes on performing quick formats on page 140
- Volume allocation methods on page 190
- Allocate Volumes dialog box on page 200
- Workflow for providing NAS Platform file shares on page 234
- Notes on setting LUN paths for NAS Platform on page 239

Volume allocation methods
When you allocate volumes, you can use the Allocate Volumes dialog box or the Define Clustered-Host Storage dialog box.

Begin by selecting resources, such as volumes or hosts, and then click Allocate Volumes, which opens the Allocate Volumes dialog box.

Click Allocate Volumes without first selecting a resource, such as a volume or host.

There are multiple methods in which to begin allocating volumes. The visible fields in the Allocate Volumes dialog box will vary depending on the starting point and whether you have selected a resource to begin the procedure. For example, if you select resources first, the Allocate Volumes dialog box will prompt you for less information.

If you are linking with Hitachi NAS Platform v11.3 or later and allocating volumes to a file server when creating or expanding storage pools, the following is recommended:
- Use the Create Storage Pool dialog box or the Expand Storage Pool dialog box instead of the Allocate Volumes dialog box to create or expand storage pools and allocate volumes at the same time.

Device Manager can automatically specify a volume and path configuration for allocating volumes that follows the best practices for configuring storage pools.

When using the Allocate Volumes dialog box, the following conditions apply when you begin volume allocation using these available methods and starting points:
• From the General tasks pane
 On the Resources or Mobility tab, from General Tasks, click Allocate Volumes. Because no resource was selected first, you must specify host, volume, and other volume allocation requirements.

• Selecting hosts or file servers
 From the Resources tab, select one or more hosts or file servers, and click Allocate Volumes. The dialog will display the selected host or file server names instead of prompting.

• Selecting volumes
 From the Resources tab, select one or more volumes, and click Allocate Volumes. The dialog will prompt for host or file server name, but will not prompt for volume criteria.

• Selecting clustered hosts
 Configuring clustered hosts in a logical group helps ensure that volume allocations will be consistent for all members of the cluster. From the Resources tab, select a logical group, select all host members of the group, and then click Allocate Volumes. If clustered hosts are not in a logical group, from General Tasks or Actions, click Allocate Volumes and select multiple hosts. You may also use the Resources tab to locate clustered hosts, and then Allocate Volumes. The use of logical groups is recommended to avoid host selection errors.

• Searching for volumes
 You can search for volumes that meet specific criteria (such as storage system, specific allocation status, volume type, drive type, drive speed, or chip type), select one or more volumes from the search results, and click Allocate Volumes.
 You can also search using full or partial text keywords such as storage system name or host name, and then allocate volumes to the selected resource. Searching eliminates the need to manually navigate to the resource.

• Using existing volume settings
 From the Resources tab, select an allocated volume that has desired attributes and criteria for the new volume allocation, and click Allocate Like Volumes.

When using the Define Clustered-Host Storage dialog box for Fibre Channel and Fibre Channel over Ethernet (FCoE) connections, when you create a cluster configuration using existing hosts or when you add a new host to an existing host group or cluster, allocate the same volumes that are assigned to the existing hosts in the host group to the new host.

Related concepts

• [About allocating volumes](#) on page 188

Related tasks

• [Allocating volumes from general tasks](#) on page 192
Prerequisites for allocating volumes

Before allocating volumes to a host or file server, you must verify that the host, file server, and storage systems are registered in Hitachi Command Suite.

If you want to select volumes from a tier, Tiered Storage Manager license must be enabled.

In addition, determine:
- The target host or file server
- The volume type, count, capacity, and performance characteristics
- An appropriate storage system

Related concepts
- About allocating volumes on page 188

Allocating volumes from general tasks

The General Tasks list is conveniently located for volume allocation (and other frequent tasks). Because you have not selected a specific resource (for example, a volume or a host) the dialog will prompt for all necessary information.

Procedure

1. On the **Resources** or **Mobility** tab, select **Allocate Volumes**.

 Tip: If you do not see **Allocate Volumes** listed, click **more...** to see all menu items.

2. On the **Allocate Volumes** dialog box, specify volume allocation requirements.

3. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

4. (Optional) Update the task name and provide a description.

5. (Optional) Expand **Schedule** to specify the task schedule.
You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

6. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.

7. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

A completed task indicates a successful volume allocation.

Related references

- [Prerequisites for allocating volumes](#) on page 192
- [Volume allocation methods](#) on page 190
- [Allocate Volumes dialog box](#) on page 200

Allocating volumes to selected hosts

When one or more hosts are selected, the hosts are displayed in the **Allocate Volumes** dialog box. The dialog box prompts for all additional information.

Procedure

1. On the **Resources** tab, select **Hosts**.

2. Hosts are grouped by operating system. Click the operating system for the target hosts.

3. **Tip:** If you do not know the host OS, searching for the host may be the better method for locating the host and allocating volumes.

4. Select one or more hosts, and click **Allocate Volumes**.

5. In the **Allocate Volumes** dialog box, specify volume allocation requirements.

6. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

7. (Optional) Expand **Schedule** to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

8. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.

9. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.
Result
A completed task indicates a successful volume allocation.

Related tasks
- Viewing HCS task status on page 385

Related references
- Prerequisites for allocating volumes on page 192
- Volume allocation methods on page 190
- Allocate Volumes dialog box on page 200

Allocating volumes to selected file servers
When a file server or file server cluster are selected, the file server is displayed in the volume allocation dialog. The dialog will prompt for all additional information.

To allocate volumes to a file server or file server cluster:

Procedure
1. On the Resources tab, select File Servers, then select All File Servers.
2. In the Servers/Clusters list, select the row of the target file server or cluster (only one row can be selected), and click Allocate Volumes. The Allocate Volumes dialog box will launch.
3. Specify your volume allocation requirements.
4. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
5. (Optional) Update the task name and provide a description.
6. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
7. Click Submit.
 If the task is scheduled to run immediately, the process begins.
8. You can check the progress and the result of the task on the Tasks & Alerts tab. Click on the task name to view details of the task.

Tip: If you are linking with Hitachi NAS Platform v11.3 or later and allocating volumes to a file server when creating or expanding storage pools, the following is recommended: Use the Create Storage Pool dialog box or the Expand Storage Pool dialog box instead of the Allocate Volumes dialog box to create or expand storage pools and allocate volumes at the same time.
Device Manager can automatically specify a volume and path configuration for allocating volumes that follows the best practices for configuring storage pools.

Tip: For Hitachi NAS Platform family, in cases such as node additions, if you want to allocate volumes to file server nodes that are in clusters, use the **Define Clustered-Host Storage** dialog box.

A completed task indicates a successful volume allocation.

9. To verify the volume allocation, select the file server or cluster to which the volumes were allocated, and then select the **System Drives** tab for Hitachi NAS Platform family, or select the **Volumes** tab for Hitachi NAS Platform F or Hitachi Data Ingestor to confirm that the volumes were allocated successfully.

Result
Volumes have been allocated to a file server, or file server cluster, and verified.

Related concepts
- About registering and removing file servers on page 75
- About allocating volumes on page 188

Related references
- Prerequisites for allocating volumes on page 192
- Volume allocation methods on page 190
- Allocate Volumes dialog box on page 200
- Workflow for providing NAS Platform file shares on page 234
- Workflow for providing HNAS F and HDI file shares (HFSM) on page 255

Allocating selected volumes to hosts
When volumes are selected, they are displayed in the **Allocate Volumes** dialog box, which prompts you for all additional information to allocate selected volumes to one or more hosts.

Procedure
1. On the **Resources** tab, select **Storage Systems**.
2. Expand **All Storage Systems**, and select a specific storage system. Links for volume groups are listed in the **Detailed Information** list on the application pane. Listed groups represent available pools, parity groups, and volumes.
3. Select a group from the **Resources** tree, or click a link from the **Detailed Information** list. Individual pools, parity groups, and volumes are listed.
4. Select an appropriate resource. For example, select a pool or parity group with available capacity, or select an open-unallocated volume.

5. Click **Allocate Volumes**.

Tip: Open-reserved volumes cannot be allocated. Open-allocated can be used to allocate like volumes.

6. On the **Allocate Volumes** dialog box, specify volume allocation requirements.

7. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

8. (Optional) Update the task name and provide a description.

9. (Optional) Expand **Schedule** to specify the task schedule.

 You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

10. Click **Submit**.

 If the task is scheduled to run immediately, the process begins.

11. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

A completed task indicates a successful volume allocation.

Related references

- [Prerequisites for allocating volumes](#) on page 192
- [Volume allocation methods](#) on page 190
- [Allocate Volumes dialog box](#) on page 200

Allocating volumes to clustered hosts

To prevent possible errors with cluster host selection, group hosts that belong to a cluster into a public logical group or a private logical group. Alternatively, you can select multiple hosts or file servers in the **Allocate Volumes** dialog box.

Tip: When you create a cluster configuration using existing hosts or when you add a new host to an existing host group or cluster, use the **Define Clustered-Host Storage** dialog box to allocate volumes to the new host. When using the **Define Clustered-Host Storage** dialog box, you can add the WWN of the new host to the same host group as the WWN of the existing hosts.

Prerequisites

- Add clustered hosts into the desired logical group type.
• Confirm the names of the hosts that belong to the target cluster (if you have not already added clustered hosts into a logical group).

Procedure

1. On the **Resources** tab, select **Logical Groups**.
2. Expand the **Public Logical Groups** or **Private Logical Groups** root folder, and locate an appropriate logical group.
3. Locate the **Hosts** and **Volumes** tabs under the summary pane, and select all hosts for the cluster.

Note: You can allocate volumes to cluster hosts that are not in a logical group. However, you must ensure that your host selection is correct. Logical groups are strongly recommended.

4. Click **Allocate Volumes**.

Tip: To allocate volumes to cluster hosts, verify that all cluster host names are displayed in the **Allocate Volumes** dialog box to prevent an incorrect allocation.

5. On the **Allocate Volumes** dialog box, specify volume allocation requirements.
6. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.
7. (Optional) Update the task name and provide a description.
8. (Optional) Expand **Schedule** to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.
9. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.
10. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

A completed task indicates a successful volume allocation.

The same volumes have been allocated to the individual hosts that belong to a cluster.

Related tasks

- [Viewing HCS task status](#) on page 385

Related references

- [Prerequisites for allocating volumes](#) on page 192
- [Volume allocation methods](#) on page 190
Allocating volumes by using a keyword search

A keyword search is a full or partial text search. For example, you can search for storage systems, hosts, volumes, parity groups, DP pools, and logical groups by entering a full or partial name. Note that file servers are not subject to search. Using a keyword search provides an alternate method of navigating to a resource to allocate volumes.

Procedure

1. Enter a value in the search box and press Enter on your keyboard. All Resources is the default selection criteria. You can limit the scope of searched resources by using the drop-down menu.

 Note: As the number of searchable objects grows, identify a specific resource to search, for example Logical Groups, to decrease search time.

2. Click the link for appropriate resource. For example, assuming you searched for hosts, from your search results, click the host name link. The appropriate location in the Resources tab is displayed. The host is effectively selected.

3. Click Actions > Allocate Volumes.

4. On the Allocate Volumes dialog box, specify your volume allocation requirements.

5. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

6. (Optional) Update the task name and provide a description.

7. (Optional) Expand Schedule to specify the task schedule.

 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.

8. Click Submit.

 If the task is scheduled to run immediately, the process begins.

9. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

A completed task indicates a successful volume allocation.

Related references

- Prerequisites for allocating volumes on page 192
- Volume allocation methods on page 190
- Allocate Volumes dialog box on page 200
Allocating volumes by using a criteria search

Using a criteria search allows finding volumes with specific attributes, such as drive type or RAID level, and allocating them.

Procedure

1. From the search box drop-down menu, select More Searches.
2. Specify the search criteria and execute your search. There are Basic and Advanced tabs presenting criteria options. Basic criteria for volume status, type, drive performance, RAID level, or capacity requirement should meet most needs. Advanced criteria are more specialized.

Tip: Searches can be saved for re-use, and can be saved as private or public. Note that saving or sharing a search requires the Tiered Storage Manager license.

3. From the search results, select the volumes and click Allocate Volumes.
4. On the Allocate Volumes dialog box, specify your host, and other volume allocation requirements.
5. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
6. (Optional) Update the task name and provide a description.
7. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
8. Click Submit.
 If the task is scheduled to run immediately, the process begins.
9. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

A completed task indicates a successful volume allocation.

Related references

- Prerequisites for allocating volumes on page 192
- Volume allocation methods on page 190
- Allocate Volumes dialog box on page 200

Allocating volumes by using existing volume settings

If you have allocated at least one volume to a host, you can allocate new volumes for the host by using the attributes of an existing volume as the default for the Allocate Volume dialog box. Your volume allocation can be exactly like, or similar to, the selected existing volume.
Procedure

1. On the Resources tab, select Hosts or Logical Groups.
2. Expand the tree for host or logical group type (public logical groups or private logical groups), and select the desired host or logical group to display a list of existing volumes.
3. Select an existing volume that matches or is similar to your requirement, and click Allocate Like Volumes.
4. The selected host or logical group name displays, and you are prompted for other volume allocation requirements. You can retain the existing settings, or change them as needed.
5. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
6. (Optional) Update the task name and provide a description.
7. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
8. Click Submit.
 If the task is scheduled to run immediately, the process begins.
9. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

A completed task indicates a successful volume allocation.

Related references

- Prerequisites for allocating volumes on page 192
- Volume allocation methods on page 190
- Allocate Volumes dialog box on page 200

Allocate Volumes dialog box

Allocating volumes is the process for making storage capacity available to host applications and file servers. Hosts and file servers must already be registered prior to volume allocation.

When you enter the minimum required information in this dialog box, the Show Plan button activates to allow you to review the plan. Click the Back button to modify the plan to meet your requirements.

The following table describes the dialog box fields, subfields, and field groups. A field group is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double-arrow symbol (>>).
As you enter information in a dialog box, if the information is incorrect, errors that include a description of the problem appear at the top of the box.

Table 5-5 Allocate Volumes dialog box

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>-</td>
<td>If you select one or more hosts (including virtualization servers, or file servers) prior to clicking Allocate Volumes, the host names are displayed. If you did not select hosts, you are prompted to do so. The host drop-down list displays a single host, by name. Additionally, Select Hosts allows you to select multiple hosts, and displays related details such as the OS and WWN. For example, you can select cluster hosts for volume allocation. The host drop-down list provides a special selection called Allocate without LUN security. When you enter adequate volume information, LUN Path Options expand to a list of storage ports with LUN security disabled. Select one or more ports, and click Add to add them to the Selected Storage Ports list as part of this dialog box. All hosts with LUN paths on the selected storage port have access to the volumes on the ports.</td>
</tr>
<tr>
<td>Allocation Type</td>
<td>-</td>
<td>To allocate global-active device pairs, select Global-Active Device, which will display Primary/Secondary tabs for configuring paired volumes. For all other volume allocations, select Standard. Global-Active Device is not displayed if a selected host is a file-server.</td>
</tr>
<tr>
<td>No. of Volumes</td>
<td>-</td>
<td>Specify the number of volumes to allocate to the selected hosts. For global-active device, this is the number of volumes to become paired volumes and allocated to the selected hosts.</td>
</tr>
<tr>
<td>Volume Capacity</td>
<td>-</td>
<td>Specify the volume size and select the unit of measure (for example, GB represents Gigabytes). The total capacity to be allocated (No. of Volumes * Capacity) is displayed. Note: You can create a new volume when volume criteria, such as volume capacity, cannot be satisfied by existing volumes. This is indicated in Advanced Options > Creating Volume Settings > Advanced Options by formatting and stripe size options for the new volume.</td>
</tr>
<tr>
<td>Storage system</td>
<td>-</td>
<td>If you select a storage system prior to clicking Allocate Volumes, its name is displayed. Otherwise, select the storage system that is providing the volumes. Any storage system can provide basic volumes. Volumes to be allocated from DP pools must be provided by a storage system that supports this feature. Allocating volumes from a tier requires configured tier policies for the storage system. The Any option means that the volume can be sourced from any storage system that meets the criteria of the dialog box.</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>For global-active device, from the primary/secondary tabs, you must select primary and secondary storage systems that have been previously identified in the global-active device setup.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Storage Machine</td>
<td>-</td>
<td>This displays a list of one or more virtual storage machines from which you can choose during volume allocation. The virtual storage machines can also be viewed on the Administration tab by selecting Virtual Storage Machine. When allocating global-active device paired volumes, from the primary/secondary tabs, you must select the virtual storage machine to be used by both the primary and secondary storage for access to virtualized resources. If the virtual storage machine does not exist, it can be created during the global-active device setup.</td>
</tr>
<tr>
<td>Volume type</td>
<td>-</td>
<td>Select the volume type (for example, Basic Volume, Dynamic Provisioning, or Dynamic Tiering). The displayed volume types are determined based on your selected storage system. If you do not see an expected volume type, check that you have selected the correct storage system. The selected volume type affects the Advanced Options fields described below. For example, selecting a Basic Volume will populate Advanced Options > Volume Selection > Automatic with a default drive type, drive speed, chip type, RAID level, and parity group. These specifications may be altered. For example, if you change the drive speed, the parity group may change automatically. These changes are determined by available resources. You may also select an available tier from which to allocate the volume, or manually locate available unallocated volumes. If you select volume type Dynamic Provisioning, Advanced Options > Volume Selection > Automatic, this populates with an HDP pool instead of a parity group (and the specifications may be altered). If you select Dynamic Tiering, the Volume Selection field displays. Volume selection is either automatic or manual (see the following section on the volume selection field). The Any option means that the volume can be sourced from any available volume type that meets the capacity criteria, and is available from the storage system. For Hitachi NAS Platform family, basic volumes are displayed by default. The Any selection is not displayed. If either HDP (Dynamic Provisioning) or HDT (Dynamic Tiering) are selected, you must manually select the volume to assign (see the following Volume Selection, Manual option). For global-active device, you must select HDP or HDT volumes.</td>
</tr>
<tr>
<td>Volume location</td>
<td>-</td>
<td>Select Internal if you want your volume to come directly from your selected storage system, or External if volumes are mapped from external storage systems (virtualized volumes) and are adequate for your needs. The external option can appear for basic volumes and HDP pools. When viewing a list of DP pools, the volume location column indicates whether it is internal or external.</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Volume Selection</td>
<td>-</td>
<td>Note: This field is replaced by Volume Selection when Dynamic Tiering is selected (see the previous Volume type section). This field displays only if Dynamic Tiering is selected (see volume type above). Note: This field is not the same field as the Volume Selection field defined in the following Advanced Options Group section. Select Automatic to allow the system to configure volume allocation space for you from available DP pools. Select Automatic and click Select Pool to list the available DP pools. Make an appropriate selection that corresponds to your capacity requirements, and click OK. Verify that the name is correctly displayed. When displayed under Advanced Options, you can tailor the Tiering Policy Setting (see the following section). When you submit the task, a volume is created for the host. Select Manual to display the selected volumes list, select Add Volumes, and select Unallocated Volumes or Allocated Volumes. Choose an appropriate volume, click Add to update Selected Volumes, and click OK to return to volume allocation.</td>
</tr>
<tr>
<td>>> Advanced Options</td>
<td>(See the following twelve fields for details)</td>
<td>When you set the volume type to Basic Volume or Dynamic Provisioning, this displays the Tier, Automatic, and Manual options. When the volume type is Dynamic Tiering, the fields display as explained in Volume Type. The fields can be displayed or hidden when you click Advanced Options. These fields support explicit volume allocation (Tier or Manual) or volume allocation based on criteria such as drive type, drive speed, chip type, or RAID level.</td>
</tr>
<tr>
<td>Tiering Policy Setting</td>
<td>-</td>
<td>Displays only if Dynamic Tiering is selected as the volume type, and an HDT pool has been selected with Select Pool (see previous Volume Selection section). You can select a specific tier policy for the volume to be allocated, or select All.</td>
</tr>
<tr>
<td>New Page Assignment Tier</td>
<td>-</td>
<td>For VSP G1000, VSP, and HUS VM, selecting this option specifies to which hardware tier the new page of an HDT volume is to be assigned with a specified priority. Within the hardware tiers for which the tiering policy is set, specify High for an upper-level hardware tier, Middle for a medium-level hardware tier, and Low for a low-level hardware tier.</td>
</tr>
<tr>
<td>Relocation Priority</td>
<td>-</td>
<td>For VSP G1000, VSP, and HUS VM, selecting this option specifies whether you want to prioritize the relocation of the data in HDT volumes.</td>
</tr>
</tbody>
</table>
| **Volume Selection** | Tier | **Note:** This field is not the same field as the Volume Selection field that is defined when Volume Type is set to Dynamic Tiering. If your selected storage system is configured with storage tiers, you can Select a Tier for volume allocation. If your selected storage system was Any, you can see which storage systems have tiers available using Select a Tier, and make a selection.

Automatic

Device Manager automatically selects volumes based on the specified volume criteria.

Provisioning storage

Hitachi Command Suite User Guide
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>For a Basic Volume, Device Manager selects a parity group based on the volume criteria. The selected parity group changes with changes in criteria. If desired, click Select Parity Groups to make your selection. For Dynamic Provisioning volumes, the system selects an HDP pool based on volume criteria. The selected HDP pool changes with the changes in criteria. New volumes may be created or existing volumes may be used. If desired, click Select Pool to make your pool selection. Drive type, speed, chip type, RAID level, and parity group or pool can be adjusted as desired, but the primary purpose of this field relies on the storage system to decide which resources to use for volume allocation.</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
<td>For Basic Volume and Dynamic Provisioning volumes, clicking Manual displays the Selected Volumes dialog box. Click Add Volumes to select basic volumes or Dynamic Provisioning volumes.</td>
</tr>
<tr>
<td>Volume Criteria</td>
<td>Drive Type</td>
<td>Indicates the type of drive (FMD, SSD, SAS, or SATA). The drive type selection can affect volume performance, and the drive type setting can affect the parity group or HDP pool type choices.</td>
</tr>
<tr>
<td></td>
<td>Drive Speed</td>
<td>Indicates the rotational speed (in RPM) of the drive type. This option is not displayed when an FMD or SSD drive is selected in Drive Type. The drive speed selection can affect the parity group or HDP pool type choices.</td>
</tr>
<tr>
<td></td>
<td>Chip Type</td>
<td>Indicates the flash memory chip type of the physical drives. However, this option is only displayed if VSP G1000, Virtual Storage Platform or HUS VM is the selected storage system and SSD is the selected drive type. If these two conditions are met, you can select one of three options: Any, SLC, or MLC.</td>
</tr>
<tr>
<td></td>
<td>RAID Level</td>
<td>Changing the RAID level can change the parity group or HDP pool. The RAID levels and parity group configuration can vary depending on the selected storage system. For example, RAID6 may be supported on one storage system, but not on another. In addition, RAID6 is displayed only if RAID6 parity groups have been configured on the selected storage system.</td>
</tr>
<tr>
<td></td>
<td>Parity Groups</td>
<td>Changing the volume criteria can change the system selected parity group. If desired, click Select Parity Groups to make your selection.</td>
</tr>
<tr>
<td></td>
<td>Pool</td>
<td>Click Select Pool to select the HDP pool from which to allocate volumes. Changing the volume criteria can change the system selected HDP pool.</td>
</tr>
<tr>
<td>Creating Volume Settings</td>
<td>LDEV ID</td>
<td>Creating Volume Settings fields are only displayed when entered volume criteria requires that a new volume be created. See the previous definition for Volume Capacity field for an example. LDEV ID options for volume creation are displayed if VSP G1000, VSP, or HUS VM are the selected storage system, and volume criteria are such that new volumes need to be created.</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Field</td>
<td></td>
<td>Select auto or manual to locate or identify an Initial LDEV ID for volume creation.</td>
</tr>
<tr>
<td>Format Type</td>
<td></td>
<td>This field displays formatting methods that are available for the volume to be created, and available for basic volumes on the specified storage system. For example, you might see options for setting either a quick or a basic format. Note that during a quick format, the load might become concentrated on some components, lowering the I/O performance of all hosts that are running in the target storage system.</td>
</tr>
<tr>
<td>Stripe Size</td>
<td></td>
<td>This field displays stripe size options for the volume to be created, as supported by the specified storage system (for example, 64 KB).</td>
</tr>
<tr>
<td>Resource Group</td>
<td>-</td>
<td>This field only displays allocating volumes for created users (those not associated with built-in accounts), and allows them to potentially source the volume or volumes from multiple resource groups to which they have access rights, as configured for their account type.</td>
</tr>
<tr>
<td>Specify a new label</td>
<td>-</td>
<td>Volume labels are searchable, and therefore recommended as a way to find volumes. Select the check box to add a LDEV label. If the target volume is an existing volume with a current label, the new label is applied to the volume.</td>
</tr>
<tr>
<td>Initial value</td>
<td>-</td>
<td>The smallest number of sequential numbers. The Initial value is not required, but can be useful for differentiation when allocating multiple volumes. For each volume, the number is in ascending order of LDEV ID.</td>
</tr>
<tr>
<td>Reflect these labels</td>
<td>-</td>
<td>Reflect these labels to the storage system is checked by default so that naming is consistent between HCS and the storage system itself. If the selected storage system does not support label setting, this item is not displayed.</td>
</tr>
<tr>
<td>CLPR for DP volume</td>
<td>-</td>
<td>Select cache logical partition (CLPR) values from the list and assign this value to DP volumes when two conditions are met: the target storage system supports CLPR, and DP volumes are selected. Select either of the following values: Automatically, which assigns the default value if it is a new volume (if it is an existing volume, the CLPR is unchanged), or CLPR, which assigns a CLPR number (0-9...) to the unallocated volume.</td>
</tr>
<tr>
<td>Command Device</td>
<td>-</td>
<td>When allocating a volume intended to be a command device for a pair management server, select the Command Device checkbox and select Enabled. You may also enable or disable the following: Command Device Security User Authentication Device Group Definition</td>
</tr>
<tr>
<td>Use secondary volume</td>
<td>-</td>
<td>When primary and secondary storage systems are not discovered by a single HCS management server, select this checkbox to reserve the secondary volume to prevent access until the global-active device pair can be created using Replication Manager.</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>>> LUN Path Options</td>
<td>(See the following two fields for details)</td>
<td>Click LUN Path Options to display the fields and buttons for configuring LUN paths (the storage port to host port mappings that connect volumes to hosts).</td>
</tr>
</tbody>
</table>
| No. of LUN paths per Volume | - | Specify the number of LUN paths to allocate per host. Changing the path count may cause the system to suggest a new path for you automatically. Click Edit LUN Paths to assign or change LUN paths. LUN paths can be displayed in either graphical (Topological Graph) or tabular (Selection Table) formats. In both views, use these links to display WWN nickname information to confirm the target host bus adapter (HBA).
 • In the graphical view, click on a storage port row to add it to the LUN Path Editor panel. Connect the line to the target HBA. When another line is displayed, you can connect it to another HBA or discard it with a click.
 • In the tabular view, select a storage port, select a host port row, and then click Add to move the mapping to the Selected host Ports panel.
 When editing the LUN path of a global-active device paired volume, you can specify the settings while referencing the LUN paths of the other volume.
 To delete default or incorrect mappings, click the connector line in the graphical view, or click Remove in the tabular view. For Hitachi NAS Platform family, the path redundancy setting is recommended. By default, the number of LUN paths displayed is equal to the number of Hitachi NAS Platform ports or storage system ports, whichever is lower. |
| LUN Security Disabled Storage Ports, Selected Storage Ports | - | These related screens only display under LUN Path Options when Allocate without LUN security is selected from the host drop-down. For more information, see the previous Hosts field description.
 Unsecured ports are listed in LUN Security Disabled Storage Ports. Select the ports on which to make the volume available, and click Add to move the ports to Selected Storage Ports. You can review your plan and click Submit for this allocation task. All hosts that can access the ports on which the volume is on can access the volume. |
| >> Host Group and LUN Settings | (See the following two fields for details) | Volume allocations using Fibre Channel or FCoE prompt for such items as host group name, host mode, host mode options, and LUN number.
 To display or hide the following fields, click Host Group and LUN Settings.
 This option specifies the configuring of all hosts in a single host group when volumes are allocated to multiple hosts simultaneously.
 This option specifies the configuring of a separate host group for each host when volumes are allocated to multiple hosts simultaneously. |
| Host Groups | Shared by All Hosts | This option specifies the configuring of all hosts in a single host group when volumes are allocated to multiple hosts simultaneously.
 Separate for Each Host | This option specifies the configuring of a separate host group for each host when volumes are allocated to multiple hosts simultaneously. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td>Displays host group information for hosts that are in a host group. For hosts that are not in a host group, a host group can be created by entering a name for a host group as needed.</td>
</tr>
<tr>
<td>Host Group Settings in Detail</td>
<td></td>
<td>This button displays a list of host groups than can be used during volume allocation, or which were previously created for prior volume allocations.</td>
</tr>
<tr>
<td>Host mode</td>
<td></td>
<td>Select the host mode that supports the host type for which you are allocating volumes.</td>
</tr>
<tr>
<td>Host mode options</td>
<td></td>
<td>Select one or more host mode options for supporting special requirements for specific applications.</td>
</tr>
<tr>
<td>LU Number</td>
<td>auto or manual selection buttons</td>
<td>Logical unit (LU) numbers can be assigned automatically or manually for the volumes being allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To automatically assign LU numbers to the allocated volumes, select auto and enter a start from number (or use the default). LU numbers are set in ascending order while avoiding existing numbers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To manually assign LU numbers to the allocated volumes, select manual and click Select LU Number to choose a starting LU number.</td>
</tr>
<tr>
<td>>> Virtual ID Settings</td>
<td>(See the next field for details)</td>
<td>Virtual ID Settings for global-active device are displayed only when options other than the default virtual storage machine are used on the primary storage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An option for manually specifying the starting virtual LDEV ID to use for allocated volumes. Volumes for which virtual IDs have not been specified are assigned a new virtual LDEV ID when they are allocated to a host that belongs to resource groups used in data migrations that use virtual IDs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virtual LDEV IDs are assigned automatically by default, with unused IDs assigned to volumes in ascending order. If a user manually specifies an ID, volumes receive the lowest available ID that is equal to or greater than the specified value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For global-active device, accept the default starting virtual LDEV ID for global-active device paired volumes being allocated, or manually select a starting virtual LDEV ID. The displayed value is the minimum value that can be specified as an LDEV ID. The virtual LDEV IDs will provide a single ID for the global-active device paired volumes being accessed by hosts.</td>
</tr>
<tr>
<td>Starting virtual LDEV ID Targets</td>
<td>LDKC</td>
<td>Logical disk controller (LDKC) number that forms part of the starting virtual LDEV ID.</td>
</tr>
<tr>
<td></td>
<td>CU</td>
<td>Control unit (CU) number that forms part of the starting virtual LDEV ID.</td>
</tr>
<tr>
<td></td>
<td>DEV</td>
<td>Device (DEV) number that forms part of the starting virtual LDEV ID.</td>
</tr>
<tr>
<td>>> Pair management Server Settings</td>
<td>(See the following two fields for details)</td>
<td>These selections are made on the Primary and Secondary tabs.</td>
</tr>
</tbody>
</table>

Provisioning storage
Hitachi Command Suite User Guide
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair management server</td>
<td>New</td>
<td>Displayed hosts will be pair management servers configured during global-active device setup.</td>
</tr>
<tr>
<td>Instance ID</td>
<td>New</td>
<td>Create a new configuration definition file (with a new instance ID). The entered instance ID is validated to prevent duplicates.</td>
</tr>
<tr>
<td></td>
<td>Existing</td>
<td>Use an existing configuration definition file. The existing instance IDs are listed.</td>
</tr>
<tr>
<td>>> Pair Settings</td>
<td></td>
<td>For global-active device, pair settings fields are used to finalize pair information.</td>
</tr>
<tr>
<td>Quorum Disk</td>
<td>-</td>
<td>The quorum disk number is configured for the primary and secondary storage systems during the initial global-active device setup. You can accept the default value or select a value.</td>
</tr>
<tr>
<td>Copy Group</td>
<td>New</td>
<td>Used to create a new copy group by name, for the global-active device pairs being allocated. Valid copy group names must be unique in a configuration definition file (horcmN.conf) and follow these rules:</td>
</tr>
</tbody>
</table>
| | | • 1 - 31 characters
| | | • A - Z, a - z, 0 - 9, (dash -), (underscore _), (period .), @
| | | • '-' is not permitted as the first character |
| | Existing | Places global-active device pairs into an existing copy group. Existing is disabled if no copy group exists, from the initial global-active device setup, or on the pair management server. |
| Pair name | Automatic| A pair name consisting of a prefix and start sequence no. is created automatically by the system. |
| | Manual | A pair name consisting of prefix and start sequence no. is created manually by the user. Valid pair names must be unique in a copy group, and follow these rules: |
| | | • 1 - 26 characters
| | | • A - Z, a - z, 0 - 9, (dash -), (underscore _), (period .), @
| | | • '-' is not permitted as the first character
| | | • Start sequence no should be 0 - 99999
<p>| | | • The prefix and start sequence no. should not be blank |
| >> iSCSI Target and LUN | (See the | Volume allocations using iSCSI will prompt for items such as host mode, host mode options, nickname of the iSCSI target, and LU number. |
| Settings | following two fields for details) | To display or hide the following fields, click iSCSI Target and LUN Settings. |
| iSCSI Targets | Shared by All Hosts | Select this option to indicate that all hosts in the volume allocation reference the same iSCSI targets. |
| | Separate for each Host | Select this option to indicate that each host in the volume allocation references different iSCSI targets. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selecting Method</td>
<td></td>
<td>Select Use an existing iSCSI Target to indicate that you want to use existing iSCSI targets. Select Create an iSCSI Target to indicate that you want to create new iSCSI targets.</td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>Prompts you to create a new iSCSI target, or displays the existing iSCSI target name.</td>
</tr>
<tr>
<td>iSCSI Target Settings in Detail</td>
<td></td>
<td>Displays a list of iSCSI targets that can be used during allocation. This also displays iSCSI targets that were set after the task for allocating volumes was executed.</td>
</tr>
<tr>
<td>Host mode</td>
<td></td>
<td>Select the host mode that supports the host type for which you are allocating volumes.</td>
</tr>
<tr>
<td></td>
<td>Note:</td>
<td>When volumes are allocated to multiple hosts whose host modes differ, Mixed is displayed and indicates an error.</td>
</tr>
<tr>
<td>Host mode options</td>
<td></td>
<td>Select one or more host mode options to support special requirements for specific applications.</td>
</tr>
<tr>
<td>LU Number</td>
<td>-</td>
<td>This is the same as described in Host Groups.</td>
</tr>
</tbody>
</table>
| >> Host Group and LUN Settings for Mid-range Storage | (See the following field for details) | For mid-range storage systems, the Host Group and iSCSI target dialog boxes can include additional fields for enhancing the management of mid-range storage systems.
The following fields are specific to mid-range storage systems only. The Host Mode and LU Number fields remain part of the mid-range storage dialog box and are documented in the previous descriptions. |
| Options | Platform | Selects the host platform type (for example, Windows) to assist in setting host mode. |
| | Middleware | Selects the installed software on the platform to assist in setting host mode. |
| | Alternate Path | Indicates the multipath management software used by the host to assist in setting host mode. |
| | Failover | Indicates the cluster software used by the host to assist in setting host mode. |
| | Additional Parameters | Click Select to display additional specific usage options to assist in setting host mode. |

Related concepts

- [About allocating volumes](#) on page 188

Related tasks

- [Allocating volumes from general tasks](#) on page 192
- [Allocating volumes to selected hosts](#) on page 193
- [Allocating volumes to selected file servers](#) on page 194
- [Allocating selected volumes to hosts](#) on page 195
- [Allocating volumes to clustered hosts](#) on page 196
- [Allocating volumes by using a keyword search](#) on page 198
- [Allocating volumes by using a criteria search](#) on page 199
- [Allocating volumes by using existing volume settings](#) on page 199
- [Allocating global-active device pairs](#) on page 291
About clustered-host storage

Clustered-host storage is a storage configuration that is created when volumes are allocated to a new host (or file server) that is added to a host group (also known as a host cluster).

When creating clustered-host storage, you add the WWN of the newly added host to the host group to which the WWN of an existing host belongs, and you set LUN paths from the newly added host to the same volumes as those for an existing host.

For example, to better manage and distribute the load on your applications and resources, update the existing host group by creating clustered-host storage using existing volumes by allocating them to a new host in the host group.

Newly allocated volumes represent additional storage resources for a new host. Clustered-host storage supports the reallocation of existing volumes within the host group to meet specific needs.

The following figure illustrates the process of adding a host to create clustered-host storage in a system.
Creating clustered-host storage

You create clustered-host storage by allocating volumes to a new host within an existing host group (also known as a host cluster).

Creating clustered-host storage involves allocating new or additional volumes to a new host that has been added to an existing host group, setting new LUN paths to the new host, and adding the WWN of the new host to an existing host group.

Prerequisites
- Discover (and register) new hosts.
- Allocate volumes to existing hosts.
- Verify that the host connections are Fibre Channel or Fibre Channel over Ethernet (FCoE)
Procedure

1. On the **Resources** tab, click **Hosts**, and select **All Hosts** to list the hosts by OS type in the Application pane.
2. From the list of hosts, select one or more hosts (or from the list of volumes, select one or more volumes allocated to these hosts).
3. Click **More Actions**, and select **Define Clustered-Host Storage**.
4. Select secondary hosts to add to the cluster:
 - To add one host, select the host name in the **Select a host/file server** list.
 - To add multiple hosts, click **Select Hosts/File Servers**, highlight each host name, and click **Add**.
5. From the **Selected Storage System** list, select the storage system to associate with the selected host.
 If two or more storage systems are allocated to the selected host, select only one storage system.
6. In the **Add WWN** list, select the WWN of the new host to add to an available host group.
 View the host groups to which the new host can be added in the **Available Host Groups** list.
7. In the **Available Host Groups** list, select a host group, and click **Add**.
 You can see the volumes that are associated with the selected host group in **A list of affected volumes**, and also verify the added LUN paths for each entry in the **Available LUN Path** list.

 Note: To add more new hosts and associated WWNs, repeat steps 4 through 7 as needed. If you need to modify host information, expand the **Host Group and LUN Settings** to set host group information.

8. Click **Show Plan** and confirm that the information in the plan summary is correct.
 If changes are required, click **Back**.
9. (Optional) Update the task name and provide a description.
10. (Optional) Expand **Schedule** to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is **Now**. If scheduled for **Now**, select **View task status** to monitor the task after it is submitted.
11. Click **Submit**.
 If the task is scheduled to run immediately, the task begins.
12. You can check the progress and the result of the task on the **Tasks & Alerts** tab.
 Click on the task name to view details of the task.
Result

The new host is added to the designated host group, which created clustered-host storage by virtue of the following:
• LUN paths are created between new host and host group
• WWN of new host is added to host group

Tip: You can also use the Edit LUN Paths dialog box to confirm that the WWN of the new host is successfully added to the host group.

Related concepts
• About clustered-host storage on page 210

Related tasks
• Allocating volumes to selected hosts on page 193
• Editing a WWN nickname on page 368
• Editing LUN paths on page 224

About unallocating volumes

You can unallocate volumes from hosts or file servers.
You can also unallocate global-active device paired volumes from hosts.

Unallocated volumes can be:
• Re-allocated (with existing data) to a host or file server that can recognize the existing data (file system).
• Used for other storage requirements.

Unallocating a volume deletes all LUN paths that connect the volumes to the host or file server.

Unallocating volumes does not delete existing volume data by default. However, during unallocation there is an option to delete the volume (volume data is lost) and return it to unused capacity, or you can delete the unallocated volume later. As a precaution, to retain volume data, back up volumes before unallocating them (for example, for volumes to be re-allocated to a new host).

Related concepts
• About removing hosts and releasing associated resources on page 73

Related tasks
• Unallocating volumes from hosts on page 214
• Unallocating volumes from file servers on page 215

Related references
• Unallocate volumes dialog box on page 216
Unallocating volumes from hosts

Unallocated volumes can be re-allocated (with existing data) or can be made available for other storage requirements.

Prerequisites
- Identify the name of the target host, and the volumes to unallocate.
- If necessary, backup data on the target volumes.
- Unmount all allocated volumes that you plan to unallocate. An IT administrator might have to perform this task.

Procedure
1. On the Resources tab you can unallocate volumes from several locations:
 - From General Tasks, select Unallocate Volumes.
 - Select a host OS, select one or more target hosts, and click Unallocate Volumes.
 - Select a host OS, click a target host name to display volumes, select one or more volumes, and click Unallocate Volumes.
 - Search for a host, click the host name and go directly to the volume list, and click Unallocate Volumes

 The Unallocate Volumes dialog is launched.

2. Select the host and host volumes to unallocate. Note that if the host and host volumes were selected prior to launching the Unallocate Volumes dialog box, you will go directly to the plan summary mentioned in the next step.

3. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

4. (Optional) Update the task name and provide a description.

5. (Optional) Expand Schedule to specify the task schedule.

 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.

6. Click Submit.

 If the task is scheduled to run immediately, the process begins.

7. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

Unallocated volumes are added back to the storage system Open-Unallocated volume list.
Unallocating volumes from file servers

Unallocated volumes can be re-allocated (with existing data) or can be made available for other storage requirements.

Prerequisites

- Identify the name of the target cluster or file server, and the volumes to unallocate.
- If necessary, backup data on the target volumes.
- Unmount all allocated volumes that you plan to unallocate. An IT administrator might have to perform this task.

Procedure

1. On the Resources tab, select File Servers, then select All File Servers.
 - From the Servers/Clusters list, select the row of the target cluster or file server (only one row can be selected), and then click Unallocate Volumes.
 - To unallocate individual volumes, select the target cluster or file server in the tree view, and then select the target volumes from the System Drives tab for Hitachi NAS Platform, or the Volumes tab for Hitachi NAS Platform F or Hitachi Data Ingestor, and then click Unallocate Volumes.

2. Specify the appropriate settings for creating a plan.
3. Verify the plan and click Submit.
4. In the task list, confirm that the task is completed.

Tip: For Hitachi NAS Platform family, for reasons such as node deletion, if you want to unallocate volumes from individual file server nodes that are in clusters, click the link of the cluster name and select the Physical View tab. From the list, select the row of the target file server (node) and click the Unallocate Volumes button.
Unallocate volumes dialog box

Successfully unallocated volumes are placed in the Open-Unallocated folder of the storage system from which they originated. Unallocated volumes can be reallocated to another host, with data intact.

Volumes can be deleted using this dialog box and returned to unused capacity if eligible, or previously unallocated volumes can be reallocated to another host.

When you enter the minimum required information in this dialog box, the Show Plan button activates to allow you to review the plan. Click the Back button to modify the plan to meet your requirements.

The following table describes the dialog box fields, subfields, and field groups. A field group is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double-arrow symbol (>>).

As you enter information in a dialog box, if the information is incorrect, errors that include a description of the problem appear at the top of the box.

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
</table>
| Host | - | Note: It is recommended that volumes be unmounted from hosts prior to unallocating the volumes. The unallocate volumes dialog box works slightly differently depending on where you launch the dialog box, for example:
| | | If you select Unallocate Volumes from General Tasks, you will be prompted to select a host. Selecting the host will display the host volumes. Select one or more volumes and click Show Plan to display the fields and options below.
| | | If you select Unallocate Volumes by selecting a host row from the Hosts panel, you will not be prompted to select a host. Host volumes are displayed. Select one or more volumes and click Show Plan to display the fields and options below. |
If you click the host name to list host volumes, you can identify and select volumes using details such as host group, or volume attribute. Select volumes and click Unallocate Volumes to display the fields and options below. In this case, Show Plan is not displayed because the host volumes were known prior to launching the dialog box.

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unallocate global-active device pair simultaneously</td>
<td>-</td>
<td>When a global-active device primary (P-VOL) or secondary (S-VOL) volume is selected to be unallocated and this checkbox is selected, the global-active device pair will be simultaneously unallocated.</td>
</tr>
<tr>
<td>Plan Summary</td>
<td>-</td>
<td>For one or more volumes the volume ID, storage system, volume type, drive type, and host for each volume is displayed. When a global-active device paired volume is selected, Copy Info(P-VOL) and Copy Info(S-VOL) are displayed.</td>
</tr>
<tr>
<td>>> Plan Details</td>
<td>Volume Information</td>
<td>There is a Deletable column with a yes or no value to indicate whether the volume can be deleted. For example, volume conditions preventing deletion include: • The volume is in use by another host • The volume is a command device • The volume is a pair volume</td>
</tr>
<tr>
<td></td>
<td>LUN Path Information</td>
<td>For one or more volumes the volume ID, storage system, storage port, port type, host port, LU number, host group, host mode, and 'other options' for each volume is displayed. This provides complete storage and host LUN path information.</td>
</tr>
<tr>
<td></td>
<td>global-active device pair information</td>
<td>When unallocating global-active device pairs, copy pair names, pair management servers, and copy groups appear as information of the pairs that are released at the same time that global-active device pair volumes are unallocated.</td>
</tr>
<tr>
<td></td>
<td>Pair Management Server Information</td>
<td>When unallocating global-active device pairs, information such as the names and instance IDs of the copy groups that are deleted at the same time that pairs are released appears.</td>
</tr>
<tr>
<td></td>
<td>Virtual LDEV ID information</td>
<td>When unallocating volumes such as global-active device S-VOLS, virtual LDEV ID information is displayed.</td>
</tr>
<tr>
<td>>> Advanced Options</td>
<td>Host Group Delete</td>
<td>If you select all volumes for a host group, a host group deletion option is displayed. Deleting a host group is only done under very specific circumstances, such as the target server having been replaced with a new server. Do not select this option unless you know the exact status of the target server and the server volumes (data), and are confident this option is appropriate.</td>
</tr>
<tr>
<td></td>
<td>Only unallocate volumes</td>
<td>This default selection unallocates volumes only without deleting volume data or the volume. Unallocated volumes can be re-allocated to another host, for example a newer and faster server.</td>
</tr>
<tr>
<td></td>
<td>Release LUSE volumes</td>
<td>A LUSE volume is created by aggregating (combining) multiple smaller LDEVs into a larger volume that is allocated to a host. If one or more LUSE volumes are selected, this option is activated and can be selected to un-allocate LUSE volumes.</td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>volumes and release the component LDEVs of the LUSE volume.</td>
</tr>
<tr>
<td>Delete volumes</td>
<td></td>
<td>For volumes where Plan Details > Volume Information indicates the volume can be deleted (Deletable=yes), eligible volumes will be deleted and returned to unused capacity. To delete a selected volume when unallocating volumes: select Delete Volumes, and click Submit.</td>
</tr>
<tr>
<td>Delete virtual ID information assigned to volumes</td>
<td></td>
<td>Select Delete Virtual Information from volumes to delete virtual ID information. This option should only be used by an administrator knowledgeable about the status of migrated volumes with virtual ID information, or the status of global-active device pairs.</td>
</tr>
<tr>
<td>LDEV IDs are moved to the resource pool of the default virtual storage machine</td>
<td></td>
<td>Select LDEV IDs are moved to the resource pool of the default virtual storage machine to release LDEV IDs.</td>
</tr>
</tbody>
</table>

Related concepts
- [About unallocating volumes](#) on page 213
- [About releasing a LUSE volume](#) on page 148

Related tasks
- [Unallocating volumes from hosts](#) on page 214
- [Unallocating volumes from file servers](#) on page 215
- [Unallocating global-active device pairs](#) on page 301
- [Unallocating individual global-active device volumes](#) on page 302

Configuring Fibre Channel ports

Enable LUN security and configure data transfer speeds, port addresses, and fabric switch settings.

Enabling LUN security on a port

To protect mission-critical data in your storage system, you can enable LUN security on ports to secure LUs from illegal access.

By default, LUN security is disabled on each port. When registering hosts in multiple host groups, you must enable LUN security (set the switch to enabled). When you change LUN security from disabled to enabled, you must specify the WWN of the host bus adapter.

Caution: Although you can enable LUN security on a port when host I/O is in progress, I/O is rejected with a security guard after enabling. To prevent this, enable LUN security on each port when configuring your storage system.
Procedure

1. On the Resources tab, click Storage Systems, and then expand All Storage Systems and the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Click Ports/Host Groups.
 - For other available storage systems:
 From the Actions list in the application pane, select Element Manager. Refer to the documentation for the native management tool for your storage system.
3. Select the Ports tab.
4. Select the desired port.
5. Select Edit Ports.
 The Edit Ports window opens.
6. Select the Port Security check box, and then select Enable.
7. Click Finish. A message appears, confirming whether to switch the LUN security.
8. Click OK to open the Confirm window.
9. In the Confirm window, confirm the settings.
10. Enter a unique Task Name or accept the default, and then click Apply.
 If Go to tasks window for status is checked, the Tasks window opens.

Related tasks

- Disabling LUN security on a port on page 219
- Setting the data transfer speed on a Fibre Channel port on page 220
- Setting the Fibre Channel port address on page 221
- Setting the fabric switch on page 222

Disabling LUN security on a port

Use this procedure to disable LUN security on a port.

Caution: Do not disable LUN security on a port when host I/O is in progress.

Procedure

1. On the Resources tab, click Storage Systems, and then expand All Storage Systems and the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Click Ports/Host Groups.
 - For other available storage systems:
From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.

3. Select the **Ports** tab.
4. Select the desired port.
5. Select **Edit Ports**. The **Edit Ports** window opens.
6. Select the **Port Security** check box, and then select **Disable**.
7. Click **Finish**. If disabling LUN security, a message appears, indicating that only host group 0 (the group whose number is 00) is to be enabled. Clicking **OK** opens the **Confirm** window.
8. In the **Confirm** window, confirm the settings.
9. Enter a unique **Task Name** or accept the default, and then click **Apply**.
 If **Go to tasks window for status** is checked, the **Tasks** window opens.

Related tasks
- [Enabling LUN security on a port](#) on page 218

Setting the data transfer speed on a Fibre Channel port

As system operation continues, you might notice that a large amount of data is transferred at some ports, but a small amount of data is transferred at other ports. You can optimize system performance on a Fibre Channel port by setting a faster data transfer speed on ports where a larger amount of data is transferred, and setting a slower data transfer speed on ports where a smaller amount of data is transferred.

Note: In Fibre Channel over Ethernet (FCoE) networks, the port speed is fixed at 10 Gbps and cannot be changed.

Procedure

1. On the **Resources** tab, click **Storage Systems**, and then expand **All Storage Systems** and the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems:
 Click **Ports/Host Groups**.
 - For other available storage systems:
 From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. In the **Ports/Host Groups** window, select the **Ports** tab.
4. Select the desired port.
5. Click **Edit Ports**.
6. In the **Edit Ports** window, select the **Port Speed** check box, and then select the desired port speed (select the speed in the unit of Gbps (Gigabit per second).

 If **Auto** is selected, the storage system automatically sets the speed to 2, 4, 8, or 16 Gbps.

Note: When setting speed on a Fibre Channel port:
- If the HBAs (host bus adapters) and switches support 2 Gbps, use the fixed speed of 2 Gbps for the CHF (channel adapter for Fibre Channel) port speed. If they support 4, 8, or 16 Gbps, use 4, 8, or 16 Gbps for the CHF port speed, respectively.
- If the **Auto Negotiation** setting is required, some links might not be up when the server is restarted. Check the channel lamp. If it is flashing, disconnect the cable, and then reconnect it to recover from the link-down state.
- If the CHF port speed is set to **Auto**, some equipment might not be able to transfer data at the maximum speed.
- When you start a storage system, HBA, or switch, check the host speed appearing in the Port list. If the transfer speed is different from the maximum speed, select the maximum speed from the list on the right, or disconnect, and then reconnect the cable.

7. Click **Finish**.
8. In the **Confirm** window, confirm the settings.
9. Enter a unique **Task Name** or accept the default, and then click **Apply**.

 If **Go to tasks window for status** is checked, the **Tasks** window opens.

Related tasks
- [Setting the Fibre Channel port address](#) on page 221
- [Enabling LUN security on a port](#) on page 218

Setting the Fibre Channel port address

When configuring your storage system, set addresses for Fibre Channel ports. When addressing Fibre Channel ports, use AL-PA (arbitrated-loop physical address) or loop IDs as the addresses.

Note: In FCoE networks, you do not need to set the address of a fibre channel port.

Procedure

1. On the **Resources** tab, click **Storage Systems**, and then expand **All Storage Systems** and the target storage system.
2. Choose one of the following options.
• For Virtual Storage Platform G1000 storage systems:
 Click **Ports/Host Groups**.
• For other available storage systems:
 From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.

3. In the **Ports/Host Groups** window, select the **Ports** tab.
4. Select the desired port.
5. Select **Edit Ports**.
6. In the **Edit Ports** window, select the **Address (Loop ID)** check box, and then select the address.
7. Click **Finish**.
8. In the **Confirm** window, confirm the settings.
9. Enter a unique **Task Name** or accept the default, and then click **Apply**. If **Go to tasks window for status** is checked, the **Tasks** window opens.

Related tasks
- [Setting the data transfer speed on a Fibre Channel port](#) on page 220
- [Enabling LUN security on a port](#) on page 218

Setting the fabric switch

When you configure your storage system, specify whether the hosts and the storage system are connected via a fabric switch.

![Note](#) **Note:** In FCoE networks, Fabric is fixed to ON. Therefore, you do not need to set Fabric.

Procedure

1. On the **Resources** tab, click **Storage Systems**, and then expand **All Storage Systems** and the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems:
 Click **Ports/Host Groups**.
 - For other available storage systems:
 From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. In the **Ports/Host Groups** window, select the **Ports** tab.
4. Select the desired port.
5. Click **Edit Ports**.
6. Select a check box of **Fabric**, and select **ON** if you set the fabric switch. If you do not set the fabric switch, select **OFF**.
7. Click **Finish**.
8. In the **Confirm** window, confirm the settings.
9. Enter a unique **Task Name** or accept the default, and then click **Apply**.

 If **Go to tasks window for status** is checked, the **Tasks** window opens.

Related tasks

- [Enabling LUN security on a port](#) on page 218

Managing LUN paths

This module describes path management; how to specify LUN paths, edit host mode and host mode options, and how to specify LUN paths after replacing or exchanging a host bus adapter.

About LUN path management

When you allocate a volume to a host, Hitachi Command Suite allows you to assign or edit LUN paths between one or more volumes and one or more hosts.

LUN paths provide volume access for the host by pairing storage ports and host ports. For example, one or more storage ports can be mapped to one or more host ports or iSCSI targets.

After volumes have been allocated to a host, you can edit existing LUN path information to add new paths or delete existing paths from a list of allocated volumes in the storage systems tree, hosts tree, logical groups tree, or file servers tree, and from a list of volumes returned from a search.

To set a new LUN path between a specific volume and a host or file server, perform the allocate volume operation, and to delete all the LUN path settings between a specific volume and a host or file server, perform the unallocate volume operation. In contrast, in LUN path editing, you can change the number of LUN paths and the connection-destination ports according to operations. In particular, edit LUN paths to achieve the following:

- **Improvement of I/O performance**

 If the usage frequency of an application increases, you can add LUN paths to increase the data transmission speed and improve the I/O performance. If the usage frequency decreases, you can delete the LUN paths.

- **Enhancements to system redundancy**

 To prepare for an error in storage systems or host ports, you can enhance the system redundancy by configuring multiple LUN paths, with each using a different port.

- **Response to failures**

 When a port is disabled because of an error, you can configure LUN paths that temporarily use alternate ports to continue system operation.
Because allocated volumes belong to a specific host group or iSCSI target, the same target host port is set for all volumes in any given host group or iSCSI target. Therefore, when adding or deleting a host port for one or more volumes, you must select all of the volumes that belong to that host group or iSCSI target to maintain consistent LUN path assignments for all volumes.

When a FC or FCoE connection is used, you can change host modes and host mode options depending on the situation, for example when an application is added to the host and the operating system is upgraded.

You can add or exchange HBAs to improve performance and throughput requirements. To edit LUN paths when replacing a failed HBA or performing a planned HBA replacement, use any of the following options, depending on your task purpose:

- Add HBA
- Exchange HBA
- Remove HBA

You can use the LUN paths that were set for the old HBA for the new HBA, and delete LUN paths set for an HBA that is no longer necessary. You can also edit LUN paths for multiple HBAs collectively.

Related tasks

- [Editing LUN paths](#) on page 224
- [Editing the host mode and host mode options](#) on page 226
- [Editing LUN paths when exchanging a failed HBA](#) on page 227
- [Editing LUN paths when adding or exchanging an HBA](#) on page 228
- [Removing LUN paths after adding an HBA](#) on page 230

Editing LUN paths

You can manage the LUN paths between storage systems and hosts by adding or deleting them as needed.

You manage LUN paths on your storage system by controlling the connections between the storage systems and hosts. This allows you to better adapt to changing storage system and network conditions.

As conditions change, you can create new paths or delete selected paths on a LUN path basis that are established between multiple host bus adapters (HBA) of a host within a host group. For example, some HBAs may become unnecessary when the related applications are unneeded or infrequently used, and you can delete selected LUN paths for such cases.

Prerequisites

Allocate volumes to the existing hosts.
Procedure

1. On the Resources tab, expand the tree for storage systems, hosts, file servers, or logical groups to display volumes.

2. Select one or more volumes for which you want to edit LUN paths. If selecting multiple volumes, they must belong to the same configuration host group.

3. In the selected volume, click More Actions, and select Edit LUN Paths.

4. In the Edit LUN Paths dialog box, use the topographical graph or selection table view to map storage ports to host ports. In both views, you can use links to view WWN nickname information to confirm the target HBA.

Tip: When editing the LUN path of a global-active device paired volume, you can specify the settings while referencing the LUN paths of the other volume.

a. In Topological Graph (or graph view), click on a storage port row to add it to the LUN Path Editor panel. Connect the line to the target HBA. Another line is displayed, which you can connect to another HBA or discard with a click.

b. In Selection Table (or table view), first select a storage port, then select a host port row, and click Add to move the mapping to Selected host Ports list.

If you add an incorrect mapping and want to delete it, click the connector line in graph view, or use the remove button in table view, or click Cancel to close the dialog box and start over.

5. To delete an existing path, which is indicated by a green line in graph view, or by the 'In Use' state in the Selected host ports list in Selection Table, do the following:

Tip: To delete all the LUN paths between a specific volume and a host, file server so that there are no paths left, delete LUN path settings by unallocating the volumes.

a. In graph view, click the green line. The line will now be gray and thin which indicates that the LUN path is removed.

b. In table view, select the mapping row and click Remove to change the state from 'In Use' to 'Remove.'

6. Change any other required settings.

7. Click Show Plan and confirm that the information in the plan summary is correct.

Optionally, update the task name and provide a description.

8. Expand Schedule to specify the task schedule.

The task can be run immediately or scheduled for later. The default setting is Now.
9. Click **Submit**. If you selected **Now**, the editing LUN path process begins.

10. You can check the progress and result of the editing LUN paths task on the **Tasks & Alerts** tab. Verify the results for each task by viewing the details of the task.

Result
The LUN path settings you edited are displayed correctly.

Related concepts
- [About LUN path management](#) on page 223

Related tasks
- [Allocating global-active device pairs](#) on page 291
- [Allocating global-active device pairs using existing volumes](#) on page 293
- [Adding redundancy to open-allocated volumes](#) on page 295

Editing the host mode and host mode options
Manage your host group information by editing the host mode and host mode options after the volumes have been allocated.

You can edit host group information (host group name, host mode, and host mode options) for an existing host group by editing its LUN paths when a host, to which volumes are allocated, has been added to a host cluster. You can verify host mode option IDs when host group information is being edited or when new volumes are allocated.

Tip: In addition to when you are editing LUN paths, you can also edit host group information when allocating volumes, allocating like volumes, and defining clustered-host storage.

Prerequisites
- Allocate volumes to hosts.
- Verify that the host connections are Fibre Channel or Fibre Channel over Ethernet (FCoE).

Procedure
1. On the **Resources** tab, choose one of the following options to expand the tree for storage systems, hosts, file servers, or logical groups to display volumes.
 - **Storage Systems > All Storage Systems**
 - **Hosts > All Hosts**
 - **File Servers > All File Servers**
 - **Logical Groups > Public Logical Groups or Private Logical Groups**
2. Select a volume that belongs to the target host group (if selecting multiple volumes, they must belong to the same configuration host group).

3. Click More Actions, and select Edit LUN Paths.

4. In the Edit LUN Paths dialog box, click Host Group and LUN Settings, and modify the host group name, host mode, or host mode options as needed.

5. Click Show Plan and confirm that the information in the plan summary is correct.
 If changes are required, click Back.

6. (Optional) Update the task name and provide a description.

7. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If scheduled for Now, select View task status to monitor the task after it is submitted.

8. Click Submit.
 If the task is scheduled to run immediately, the task begins.

9. You can check the progress and the result of the task on the Tasks & Alerts tab.
 Click on the task name to view details of the task.

 Tip: Click Host Group and LUN Settings in the Edit LUN Paths dialog box to check that all edited host mode or host mode option selections are correct.

Related concepts

- About changing host settings and information on page 68

Related tasks

- Editing LUN paths on page 224
- Creating clustered-host storage on page 211

Editing LUN paths when exchanging a failed HBA

Exchange a failed HBA with a new HBA and restore the LUN path settings to the new HBA.

Prerequisites

- Identify the new WWN for the HBA that is being added
- Identify the WWN from which to model paths
- Verify that the new HBA is physically connected.

Procedure

1. On the Resources tab, select Hosts.
2. After selecting the target operating system, select the target host row, and click More Actions > Exchange HBAs.

3. Enter the New WWN or select a WWN from the table.

4. Enter the WWN from which to model paths or select a WWN from the list.
 The selected WWN will be removed from the host.

5. Click Add.

6. In the WWN Pairs list, verify that the listed HBA WWN combination before and after the replacement are paired correctly.

 Tip:
 - If the WWN information is updated when the host is refreshed, the target WWN might not be displayed in the list. In this case, you need to manually enter the WWN of the failed HBA.
 - To edit a WWN nickname from list of WWN Pairs, click Edit WWN Nicknames.

7. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

8. (Optional) Update the task name and provide a description.

9. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.

10. Click Submit.
 If the task is scheduled to run immediately, the process begins.

11. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

When the task completes, the LUN path settings are restored to the new HBA and the original WWN is removed from the host.

Related concepts
- About LUN path management on page 223
- About managing WWNs by using nicknames on page 366

Related tasks
- Editing a WWN nickname on page 368

Editing LUN paths when adding or exchanging an HBA

You can add or exchange HBAs to improve performance and throughput requirements. When adding an HBA, specify the WWN of the new HBA and then select a WWN of an existing HBA from which to model paths.
Prerequisites

- Identify the new WWN for the HBA that is being added
- Identify the WWN from which to model paths
- Verify that the new HBA is physically connected.

Procedure

1. On the Resources tab, select Hosts.
2. After selecting the target operating system, select the target host row, and click More Actions > Add HBAs.
3. Enter the New WWN or select a WWN from the list.
4. Enter the WWN from which to model paths or select a WWN from the list.
5. Click Add.
6. In the WWN Pairs list, verify that the listed HBA WWN combination before and after the replacement are paired correctly.

Tip:

- If the WWN information is updated when the host is refreshed, the target WWN might not be displayed in the list. In this case, you need to manually enter the WWN of the HBA you are adding.
- To edit a WWN nickname from list of WWN Pairs, click Edit WWN Nicknames.

7. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
8. (Optional) Update the task name and provide a description.
9. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
10. Click Submit.
 If the task is scheduled to run immediately, the process begins.
11. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

When the task completes, the new WWN is added and related LUN path settings are restored to the host.

Postrequisites

If you are performing a planned HBA replacement, remove any unnecessary WWNs and LUN path settings.
Removing LUN paths after adding an HBA

Remove a WWN from the host and also delete the related LUN paths.

Prerequisites

- Identify the WWN of the HBA you are removing

Procedure

1. On the **Resources** tab, select **Hosts**.
2. After selecting the target operating system, select the target host row, and click **More Actions > Remove HBAs**.
3. Enter the **WWN** to be removed from the host or select a WWN from the list.
4. (Optional) Select the check box **Delete Host Group** to delete the selected host group. By default, the check box is clear.
5. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.
6. (Optional) Update the task name and provide a description.
7. (Optional) Expand **Schedule** to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.
8. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.
9. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

When the task completes, the WWN and related LUN path settings are removed from the host.

Related concepts

- [About LUN path management](#) on page 223

Related tasks

- [Editing LUN paths when adding or exchanging an HBA](#) on page 228
Managing Hitachi NAS Platform file systems and shares

This module describes how to create file systems and shares for Hitachi NAS Platform (HNAS) file servers.

About managing Hitachi NAS Platform file systems and shares

The Hitachi NAS Platform family (HNAS) provides high performance file server capabilities using storage system volumes.

The Hitachi NAS Platform family (HNAS), managed using Systems Management Unit (SMU), includes the following models:
- Hitachi NAS Platform 3080/3090
- Hitachi NAS Platform 3100/3200
- Hitachi NAS Platform 4060/4080/4100

Note: Model references will only be used if necessary, as in the case of features supported on specific models.

When introducing a new file server, register the file server in Device Manager by using file server management software, then allocate storage system volumes to the file server to create file systems and shares.

Allocated volumes are stored in storage pools, and when you create or expand a file system, capacity is added from the storage pool as needed.

HNAS tasks can be performed using SMU. Common tasks can also be performed from the HCS GUI, for ease of use.

Depending on HNAS software versions, and the HCS version in use, tasks will either describe using SMU, or describe using the HCS GUI.

When the management software of the file server is System Management Unit (SMU) v10.1.3070 or later, you can:
- Create storage pools
 Create a storage pool using volumes (system drives) allocated to the file server, and use the storage pool for file systems or cache.
 If you are using Hitachi NAS Platform v11.3 or later, you can create a storage pool by specifying parity groups. Device Manager applies the best practice for the storage pool configuration, and automatically allocates volumes and specifies the setting for writing to the system drives.
- Create file systems
 You can create a file system in a storage pool that consists of a collection of volumes (system drives) allocated to the file server, and mount the file system on Enterprise Virtual Server (EVS).
• Add file shares
 You can add file shares (CIFS Share or NFS Export) to file systems with adequate free capacity for your purpose. If a file system does not have adequate free capacity, it may be possible to expand the file system (see below). A license related to file sharing functionality for file servers is required.

• Expand file systems
 You can use Top 10 File Systems from the dashboard to check for file systems with a high capacity usage. If a file system is at risk of not having enough free capacity, you can add capacity:
 • File systems whose allocation type is On Demand Allocation are allocated an appropriate amount of capacity as needed. File systems expand automatically until reaching a predefined maximum size. If the file system reaches this maximum size, you can manually set a higher maximum size.
• File systems whose allocation type is Full Allocation should be expanded manually. When expanding a file system, specifying a capacity immediately allocates that capacity to the file system.

• Expand storage pools
You can use Top 10 File Server Storage Pools from the dashboard to check for storage pools with a high capacity usage. If a storage pool does not have sufficient free capacity, allocate volumes (system drives) to the file server by using Device Manager to expand the storage pool.
If you are using Hitachi NAS Platform v11.3 or later, you can expand a storage pool by specifying parity groups. Device Manager applies the best practice for the storage pool configuration, and automatically allocates volumes and specifies the setting for writing to the system drives.

• Review or edit managed items
You can check the details of the target system drives, system drive groups, storage pools, file systems, and file shares, and edit their settings. For example, you can check the capacity of a file system or a storage pool, or change the name of a storage pool.

• Mount/Unmount file systems
File systems can be mounted and unmounted from Device Manager when you want to copy a file system or perform maintenance operations, such as changing EVS settings.

• Delete managed items
You can delete file shares, file systems, and storage pools when necessary. If you delete a file system by using Device Manager, all file shares that are related to the target file system will also be deleted. If you delete a storage pool, all the volumes that are related to the target storage pool will also be deleted.

Related concepts
• Allocating storage on page 133
• About registering and removing file servers on page 75

Related tasks
• Creating a NAS Platform file system on page 245
• Adding NAS Platform file shares on page 251
• Expanding a NAS Platform file system on page 247
• Changing NAS Platform file share settings on page 252
• Creating a NAS Platform storage pool (v11.3 or later) on page 239
• Expanding a NAS Platform storage pool (v11.3 or later) on page 240
• Creating a NAS Platform storage pool (earlier than v11.3) on page 242
• Expanding a NAS Platform storage pool (earlier than v11.3) on page 243
• Changing NAS Platform storage pool settings on page 244

Related references
• Workflow for providing NAS Platform file shares on page 234
Workflow for providing NAS Platform file shares

Use Device Manager to create file systems and file shares (CIFS or NFS Export) when a Hitachi NAS Platform file server is managed using System Management Unit (SMU) v10.1.3070 or later.

Tip: When a file server is managed by an SMU version earlier than v10.1.3070, first allocate volumes to the file server by using Device Manager, and then create file systems by using SMU.

The workflow for registering a file server to providing file systems and shares is indicated in the following figure:
By setting Device Manager information in SMU, file server information managed in SMU is sent to Device Manager to register file servers to be managed by Device Manager.

- **Set Admin services EVS**
 For Hitachi NAS Platform v10.2.3071 or later, using Device Manager, set Admin services EVS information (IP address and user account for the Server Control (SSC) of the file server) for each cluster.

- **Create a storage pool**
 Hitachi NAS Platform manages system drive volumes that are allocated to a file server and creates a storage pool by using required capacity from the system drives. The method depends on the version of Hitachi NAS Platform.
 - Hitachi NAS Platform v11.3 or later
 Using Device Manager, create a storage pool by specifying the parity groups that have suitable performance and capacity for your storage pool purposes. Device Manager automatically allocates volumes and specifies the settings for writing to the system drives.
 - Hitachi NAS Platform earlier than v11.3
 Create a volume on Device Manager and allocate the volumes to a file server. Then from Device Manager, open the SMU dialog box and create a storage pool. If you are using a version of Hitachi NAS Platform earlier than v11.2, the system drives in the storage pool must belong to a system drive group.

- **Create a file system and add file shares**
 Create a file system on the storage pool, and add file shares. The method depends on the version of Hitachi NAS Platform.
 - Hitachi NAS Platform v10.2.3071 or later
 You can use Device Manager to create a file system and file shares at the same time.
 - Hitachi NAS Platform earlier than v10.2.3071
 Launch SMU from Device Manager to create a file system and add file shares.

Tip: For SMU v10.2.3071 or later, if configuration changes or version upgrades performed on the file server side are not applied to Device Manager, use SMU to synchronize the information between the file server and Device Manager.

Related concepts
- [About managing Hitachi NAS Platform file systems and shares](#) on page 231
Conditions for parity groups that are used in storage pools

This topic describes the recommended conditions for parity groups from which you configure storage pools when creating a storage pool in Hitachi NAS Platform.

To maximize the file server performance and efficiently use the storage capacity, use parity groups that meet the following conditions for creating or expanding storage pools:

- The parity groups are not used by any server or cluster other than the target server or cluster.
- A volume has not been created or only one volume has been created by using the entire capacity of the parity group.
- There are two or more parity groups. Parity groups are needed for each creation or expansion operation.
- All parity groups have the same capacity.
- All parity groups have the same attribute for the following:
 - The system is an external storage system or internal storage system.
 - Drive type
 - Drive RPM
 - Chip Type
 - RAID level

If linking with Hitachi NAS Platform v11.3 or later, when you select appropriate parity groups, Device Manager automatically creates or expands a storage pool with the optimum configuration based on best practices for Hitachi NAS Platform.

Related references

- Best practices for configuring storage pools on page 237
Best practices for configuring storage pools

This topic describes the best practices for configuring storage pools to maximize the performance and reliability of Hitachi NAS Platform and to efficiently use as much of the storage capacity as possible.

Storage pool configuration greatly affects performance, reliability, capacity efficiency, and expandability of file systems used. Follow the best practices suggested by Hitachi NAS Platform for creating or expanding a storage pool. Following is an overview of the best practices.

• Number and capacity of volumes
 For creating or expanding a storage pool, separate out volumes from two or more parity groups to ensure performance.
 For using volumes for system drives, separate out fewer and larger volumes from each parity group. It is recommended to use the entire capacity of a parity group to create one volume. The reasons are:
 ○ Separating out many volumes from a parity group reduces performance.
 ○ When volumes that constitute a storage pool are small, the lower the upper expansion limit becomes for a storage or file system.

 In addition, the capacity of volumes that configure a storage pool needs to be equal. If you use volumes with different capacities, some areas might not be used and capacity efficiency deteriorates.

• Volume attributes
 Volumes that configure a storage pool must have the same attributes (drive type, drive speed in RPM, chip type, RAID level, and whether the drive is external or internal). If the attributes are different, overall performance is degraded by the volume with the lowest performance.

• Configuration of LUN paths
 If too many LUN paths exist between system drives and file server nodes, the system might stop.

• Settings for writing to system drives
 You can achieve high I/O performance by specifying appropriate write settings for the performance of the device for each storage system type.
 In addition, if the stripe size of volumes can be defined, specify a size that is compatible with the characteristics of Hitachi NAS Platform to improve data access efficiency.

• Chunk size of storage pools
 For Hitachi NAS Platform versions earlier than 11.2, you can specify the chunk size when creating a storage pool. There is a limit to the number of chunks that a file system can use. The chunk size affects the expandability of a file system. Small chunk sizes compromise expandability but have
better performance. Large chunk sizes have better expandability but compromise performance.

If linking with Hitachi NAS Platform v11.3 or later, Device Manager automatically creates or expands a storage pool with the optimum configuration based on best practices. You just need to select parity groups that meet the conditions. You do not need to configure volumes, paths, or settings for writing to system drives.

Related references
- [Conditions for parity groups that are used in storage pools](#) on page 236

Notes on NAS Platform file system capacity

When creating a file system for Hitachi NAS Platform family, the file system capacity entered by a user might differ from the capacity that is actually created.

Below are recommendations for specifying file system creation parameters, and reasons why specified capacity and actual capacity may differ.

For Hitachi NAS Platform family, a file system is created in chunks. Therefore, the actual capacity of a file system is a multiple of the chunk size.

If the file server is Hitachi NAS Platform v10.2.3071 or later, the value set for File System Capacity is rounded down to the nearest multiple of a chunk and displayed for Guideline Capacity as an approximation of the actual file system capacity. If you are creating a storage pool in Device Manager, the chunk size is set to 18 GB.

For example, if you specify 750 GB for File System Capacity, and then select a storage pool whose chunk size is 18 GB, 738 GB is displayed for Guideline Capacity.

When setting the file system capacity, consider the following recommendations:
- Create a file system with a capacity of 18 GB or more:
 - If you set a value smaller than 18 GB for the file system capacity, the metadata area for managing the file system becomes large, and the actual file system capacity might become much larger than the specified value.

- If the chunk size is large for the file system capacity, the value of Guideline Capacity can easily differ from the actual file system capacity. On the other hand, if the chunk size is small, the maximum file system capacity also becomes small because the maximum number of chunks usable by the file system is limited.

If the free capacity of the selected storage system is smaller than the value specified for File System Capacity, a file system is created with the size of the
free capacity of the storage pool. Therefore, the actual file system capacity differs from the value of Guideline Capacity.

Tip: If you are using a version of Hitachi NAS Platform prior to v11.2, consider the following recommendations:
- Create a chunk size of 1 GB or more.
- The size of a created chunk may not match the specified size. If you create a file system by using a storage pool that has this chunk size, the capacity of the file system also may not match the value of Guideline Capacity.

For example, if you specify 10 GB for the chunk size when creating a storage pool, depending on the available capacity at the time of creation, a chunk might be created with 9.8 GB instead of 10 GB. In addition, when you expand the storage pool, depending on how much capacity you choose to expand, a chunk might then be created with a chunk size (for example 10.3 GB) that differs from the chunk size created originally (for example 9.8 GB). For this reason, the capacity of a file system you can create varies depending on the chunk that can be used when a file system is created.

Notes on setting LUN paths for NAS Platform

This topic describes recommended storage port guidelines when allocating volumes from storage systems to Hitachi NAS Platform.

Recommendations for volumes and storage ports include:
- Set the number of volumes to less than or equal to the maximum values allowed for the number of storage ports that are being used.
- If the I/O load on the file server is high, increase the number of storage ports to be used according to the number of volumes.

For VSP G1000, VSP, Hitachi Universal Storage Platform V/VM, and Hitachi Unified Storage VM, the maximum number of volumes that can be allocated to a single file server (node) are:
- 64 x number-of-storage-ports

For Hitachi USP:
- 32 x number-of-storage-ports

For mid-range storage systems:
- 16 x number-of-storage-ports

If the number of volumes exceeds the maximum value recommended, system performance might be affected.

Creating a NAS Platform storage pool (v11.3 or later)

Creating a storage pool on a cluster or a file server when the file server is Hitachi NAS Platform v11.3 or later.
Prerequisites

- For cluster configurations, identify the name of the target cluster
- For non-cluster configurations, identify the name of the target file server
- For creating a storage pool, identify settings such as the storage pool name and capacity
- The file server must be registered in Device Manager
- Device Manager must be linked to Admin services EVS
- To improve performance, reliability, and capacity efficiency of storage pools, set conditions for parity groups that are used in storage pools.

Procedure

2. Select the target cluster or file server.
3. Click Create Storage Pool and specify the required items.
4. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
5. (Optional) Update the task name and provide a description.
6. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
7. Click Submit.
 If the task is scheduled to run immediately, the process begins.
8. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

The storage pool is created on the NAS Platform file server.

Related concepts

- About managing Hitachi NAS Platform file systems and shares on page 231

Related tasks

- Deleting NAS Platform storage pools on page 245

Related references

- Conditions for parity groups that are used in storage pools on page 236

Expanding a NAS Platform storage pool (v11.3 or later)

If the file server is Hitachi NAS Platform v11.3 or later and the capacity of a storage pool is insufficient, expand the already created storage pool.
Prerequisites

- For cluster configurations, identify the name of the target cluster
- For non-cluster configurations, identify the name of the target file server
- For expanding a storage pool, identify settings such as the storage pool capacity
- The file server must be registered in Device Manager
- Device Manager must be linked to Admin services EVS
- To improve performance, reliability, and the capacity efficiency of storage pools, set conditions for parity groups that are used in storage pools.

Procedure

1. On the **Resources** tab, select **File Servers**.
2. Select the target cluster or file server.
3. On the **Storage Pools** tab, select the row of the target storage pool.
4. Click **Expand Storage Pool** and specify the necessary items.
5. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.
6. (Optional) Update the task name and provide a description.
7. (Optional) Expand **Schedule** to specify the task schedule.
 - You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.
8. Click **Submit**.
 - If the task is scheduled to run immediately, the process begins.
9. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

The storage pool capacity is expanded on the NAS Platform file server.

Related concepts

- [About managing Hitachi NAS Platform file systems and shares](#) on page 231

Related references

- [Conditions for parity groups that are used in storage pools](#) on page 236
- [Notes on setting LUN paths for NAS Platform](#) on page 239

Changing a NAS Platform storage pool name

This topic describes changing the name of an existing storage pool when the file server is Hitachi NAS Platform v11.3 or later.

Note: You can also change a storage pool name when the file server is a Hitachi NAS Platform earlier than v11.3 by changing the NAS platform storage pool settings.
Prerequisites

- For cluster configurations, identify the name of the target cluster
- For non-cluster configurations, identify the name of the target file server
- For editing a storage pool, identify settings such as storage pool name
- The file server must be registered in Device Manager
- Device Manager must be linked to Admin services EVS

Procedure

1. On the **Resources** tab, select **File Servers > All File Servers**.
2. Select the target cluster or file server.
3. On the **Storage Pools** tab, select the row of the target storage pool.
4. Click **Edit Storage Pool** and specify the necessary items.
5. (Optional) Update the task name and provide a description.
6. Click **Submit**.
7. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

The storage pool name is changed.

Related tasks

- [Changing NAS Platform storage pool settings](#) on page 244

Creating a NAS Platform storage pool (earlier than v11.3)

When the file server is Hitachi NAS Platform versions earlier than 11.3, launch System Management Unit (SMU) from Device Manager to create a storage pool on the file server.

Prerequisites

- The file server must be registered in Device Manager
- Allocate volumes to the cluster or file server
- For cluster configurations, identify the name of the target cluster
- For non-cluster configurations, identify the name of the target file server
- For creating a storage pool, identify settings such as the storage pool name and capacity

Procedure

1. On the **Resources** tab, select **File Servers**.
2. Expand the tree and select the target cluster or file server.
3. From the **Actions** menu, select **Manage System Drives**.
4. In the **SMU** dialog box, change the settings so that the required system drive can be accessed.
On the **System Drives** tab of Device Manager, **Allowed** is displayed in the **Access** column of the target system drive. If you are using a version of Hitachi NAS Platform earlier than v11.2, continue to step 5. If you are using v11.2 or a later version, skip to step 7.

5. From the **Actions** menu, select **Create System Drive Group**. If a system drive that belongs to the same parity group or DP pool as for the target system drive is included in the already existing system drive group, select **Manage System Drive Groups** and add the target system drive into that system drive group.

6. In the **SMU** dialog box, perform the operations.

7. On the **Storage Pools** tab, click **Create Storage Pool**.

8. In the **SMU** dialog box, specify the required items.

 For explanations of items and procedures in the **SMU** dialog box, see the **SMU** online help.

9. Check the created storage pool in Device Manager, on the **Storage Pools** tab of the target cluster or file server.

Result

The storage pool is created on the NAS Platform file server.

Expanding a NAS Platform storage pool (earlier than v11.3)

When the file server is Hitachi NAS Platform versions earlier than 11.3, if the capacity of a storage pool server is insufficient, launch System Management Unit (SMU) from Device Manager to expand the already created storage pool on the file server.

Prerequisites

- The file server must be registered in Device Manager
- Allocate volumes to the cluster or file server
- For cluster configurations, identify the name of the target cluster
- For non-cluster configurations, identify the name of the target file server
- For expanding a storage pool, identify settings such as the storage pool name and capacity

Procedure

1. On the **Resources** tab, select **File Servers**.
2. Expand the tree and select the target cluster or file server.
3. From the **Actions** menu, select **Manage System Drives**.
4. In the **SMU** dialog box, change the settings so that the required system drive can be accessed.

 On the **System Drives** tab of Device Manager, **Allowed** is displayed in the **Access** column of the target system drive. If you are using a version of Hitachi NAS Platform earlier than v11.2, continue to step 5. If you are using v11.2 or a later version, skip to step 7.
5. From the **Actions** menu, select **Create System Drive Group**. If a system drive that belongs to the same parity group or DP pool as for the target system drive is included in the already existing system drive group, select **Manage System Drive Groups** and add the target system drive into that system drive group.

6. In the **SMU** dialog box, specify the required items.

7. On the **Storage Pools** tab, click **Manage Storage Pool**.

8. In the **SMU** dialog box, specify the required items.

 For explanations of items and procedures in the **SMU** dialog box, see the **SMU online help**.

9. Check the expanded storage pool in Device Manager, in the **Storage Pools** tab of the target cluster or file server.

Result

The storage pool is expanded on the NAS Platform file server.

Changing NAS Platform storage pool settings

When the file server is Hitachi NAS Platform, launch System Management Unit (SMU) from Device Manager to change settings of a storage pool, such as accessibility to the storage pool, and availability of auto-expansion for the file system. For NAS Platform versions earlier than 11.3, use this procedure to change the storage pool name.

Prerequisites

- The file server must be registered in Device Manager
- For cluster configurations, identify the name of the target cluster
- For non-cluster configurations, identify the name of the target file server
- For changing a storage pool settings, identify the storage pool name and settings to be changed

Procedure

1. On the **Resources** tab, select **File Servers**.
2. Expand the tree and select the target cluster or file server.
3. On the **Storage Pools** tab, select the target storage pool.
4. Click **Manage Storage Pool**.
5. In the **SMU** dialog box, specify the required items.
6. On the **Storage Pools** tab, click **Manage Storage Pool**.
7. In the **SMU** dialog box, specify the required items.

 For explanations of items and procedures in the **SMU** dialog box, see the **SMU online help**.

8. Check the changed storage pool settings in Device Manager, on the **Storage Pools** tab of the target cluster or file server.
Result
The storage pool settings are changed on the NAS Platform file server.

Deleting NAS Platform storage pools
You can delete storage pools on a cluster or a file server when the storage pools are no longer needed.

Prerequisites
Identify the name of the target storage pool.

Procedure
2. Select the target cluster or file server.
3. On the Storage Pools tab, select the storage pool to delete. Volumes related to the target storage pools are also deleted.
 - Hitachi NAS Platform v11.3 or later: Click Delete Storage Pools and skip to step 4.
 - Hitachi NAS Platform versions earlier than 11.3: Click Manage Storage Pool. In the SMU dialog box, delete the storage pool, and then skip to step 6.
4. Click Submit.
 If the task is scheduled to run immediately, the process begins.
5. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.
6. On the Storage Pools tab of the target cluster or file server, verify the deleted storage pool.

Result
The storage pool is deleted on the NAS Platform file server.

Creating a NAS Platform file system
Depending on the version of Hitachi NAS Platform you are using, create a file system and file shares on the file server by using either HCS or System Management Unit (SMU).

Prerequisites
- The file server must be registered in Device Manager
- Create a storage pool
- For cluster configurations, identify the target cluster name
- For non-cluster configurations, identify the target file server name
- Identify the EVS to which the file system should be assigned.
- Identify the storage pool name
• Identify file system name, allocation type, and capacity
• Identify block size
• In addition, verify the following when using Hitachi NAS Platform version 10.2.3071 or later:
 o Device Manager must be linked to Admin services EVS
 o Identify file share protocols, names, and paths
 o When intending to set access permissions for CIFS shares, add a CIFS server from the CIFS setup window in System Management Unit, and set up information on an authentication server, such as Active Directory.

Procedure

1. On the Resources tab, from the tree, select File Servers, then All File Servers.
2. From the Servers/Clusters list, select the row of the target cluster or file server, and click Create File System.
3. Create a storage pool or file share depending on the version of Hitachi NAS Platform:
 • Hitachi NAS Platform v10.2.3071 or later: Specify the required items and skip to step 4.
 • Hitachi NAS Platform versions earlier than 10.2.3071: In the SMU dialog box, select whether to create a new storage pool or use an already created storage pool, specify the required items, and then skip to step 7.
4. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
5. Click Submit.
 If the task is scheduled to run immediately, the process begins.
6. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.
7. To verify that the file system was created, select the target cluster or file server, and then click the File Systems tab. To verify that the file share was created, select the target file system, and then click the Shares/Exports tab.

Result
The file system or file shares are created on the file server.

Related concepts
• About managing Hitachi NAS Platform file systems and shares on page 231

Related tasks
• Changing NAS Platform file share settings on page 252
• Deleting a NAS Platform file system on page 250
Expanding a NAS Platform file system

Depending on the version of Hitachi NAS Platform you are using, increase the maximum allowed file system size by using either HCS or System Management Unit (SMU).

Prerequisites

- The file server must be registered in Device Manager
- For cluster configurations, identify the target cluster name
- For non-cluster configurations, identify the target file server name
- Identify the name of the target file system
- Identify the maximum size of the capacity to be allocated
- In addition, verify the following when using Hitachi NAS Platform v11.1 or later:
 - Device Manager must be linked to Admin services EVS

Procedure

1. On the Resources tab, from the tree, select File Servers.
2. From the tree, select the target cluster or file server, and on the File Systems tab, select the file system to expand.
3. Expand the file system depending on the version of Hitachi NAS Platform:
 - Hitachi NAS Platform v12.0 or later:
 Click Expand File System, enter the capacity, and then skip to step 4.
 - Hitachi NAS Platform v11.1 or later and earlier than v12.0:
 For On Demand Allocation, click Expand File System, specify the allocation limit size, and then skip to step 4. For Full Allocation, click Manage File System, and in the SMU dialog box, expand the file system. Then skip to step 7.
 - Hitachi NAS Platform versions earlier than 11.1:
 Click Manage File System. In the SMU dialog box, expand the file system, and then skip to step 7.
4. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
5. Click Submit.
 If the task is scheduled to run immediately, the process begins.
6. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.
7. On the **File Systems** tab of the target cluster or file server, verify the expanded file system.

Result
The selected file system is expanded.

Related concepts
- [About managing Hitachi NAS Platform file systems and shares](#) on page 231

Changing NAS Platform file system settings

When the file server is Hitachi NAS Platform v10.1.3070 or later, launch System Management Unit (SMU) from Device Manager to change a file system's name, or change the threshold value for the usage rate.

Prerequisites
- The file server must be registered in Device Manager
- Identify the name of the target cluster or target file server.

Procedure

1. On the **Resources** tab, from the tree, select **File Servers**.
2. In the tree, select the target cluster or file server, and on the **File Systems** tab, select the file system.
3. Click **Manage File System**.
4. In the **SMU** dialog box, specify the required items.
 - For explanations of items and procedures in the **SMU** dialog box, see the SMU online help.
5. Select the target cluster or file server in Device Manager, and on the **File Systems** tab, confirm that the settings are changed.

Result
The file system settings are changed.

Related concepts
- [About managing Hitachi NAS Platform file systems and shares](#) on page 231

Related tasks
- [Creating a NAS Platform file system](#) on page 245

Related references
- [Workflow for providing NAS Platform file shares](#) on page 234
- [Notes on NAS Platform file system capacity](#) on page 238
Mounting NAS Platform file systems

Depending on the version of Hitachi NAS Platform you are using, mount file systems by using either HCS or System Management Unit (SMU).

Prerequisites

- The file server must be registered in Device Manager
- For cluster configurations, identify the target cluster name
- For non-cluster configurations, identify the target file server name
- Identify the name of the target file system
- In addition, verify the following when using Hitachi NAS Platform v11.1 or later:
 - Device Manager must be linked to Admin services EVS

Procedure

1. On the **Resources** tab, from the tree, select **File Servers**.
2. From the tree, select the target cluster or file server, and on the **File Systems** tab, select the file systems to mount.
3. Mount the file systems depending on the version of Hitachi NAS Platform:
 - Hitachi NAS Platform v11.1 or later:
 - Click **Mount File Systems** and skip to step 4.
 - Hitachi NAS Platform versions earlier than 11.1:
 - Click **Manage File System**. In the **SMU** dialog box, mount the file systems, and then skip to step 6.
4. Click **Submit**.
 - If the task is scheduled to run immediately, the process begins.
5. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.
6. On the **File Systems** tab of the target cluster or file server, verify the mounted file systems.

Result

The selected file systems are mounted.

Unmounting NAS Platform file systems

Depending on the version of Hitachi NAS Platform you are using, unmount file systems by using either HCS or System Management Unit (SMU).

Prerequisites

- The file server must be registered in Device Manager
- For cluster configurations, identify the target cluster name
- For non-cluster configurations, identify the target file server name
• Identify the name of the target file system
• In addition, verify the following when using Hitachi NAS Platform v11.1 or later:
 ○ Device Manager must be linked to Admin services EVS

Procedure

1. On the **Resources** tab, from the tree, select **File Servers**.
2. From the tree, select the target cluster or file server, and on the **File Systems** tab, select the file systems to unmount.
3. Unmount the file systems depending on the version of Hitachi NAS Platform:
 • Hitachi NAS Platform v11.1 or later:
 Click **Unmount File Systems** and skip to step 4.
 • Hitachi NAS Platform versions earlier than 11.1:
 Click **Manage File System**, in the **SMU** dialog box, unmount the file systems, and then skip to step 6.
4. Click **Submit**. If the task is scheduled to run immediately, the process begins.
5. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.
6. On the **File Systems** tab of the target cluster or file server, verify the unmounted file systems.

Result

The selected file systems are unmounted.

Deleting a NAS Platform file system

If a NAS Platform file system is no longer needed, for example if the file system is being decommissioned and the needed data is saved, you can delete the file system.

Prerequisites

Identify the name of the target file system.

Procedure

1. On the **Resources** tab, from the tree, select **File Servers**, and then select **All File Servers**.
2. From the list of file systems, select the file system that you want to delete.
 • Hitachi NAS Platform v11.1 or later:
 Click **Delete File Systems** and skip to step 3.
 • Hitachi NAS Platform versions earlier than 11.1:
Click **Manage File System**. In the **SMU** dialog box, delete the file system, and then skip to step 5.

3. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.

4. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

5. From the **All File Servers** list of file systems, verify the deleted file system.

Result
The file system you deleted no longer appears in the list of file servers.

Adding NAS Platform file shares

Depending on the version of Hitachi NAS Platform you are using, you can add file shares to existing file systems on the file server by using either HCS or System Management Unit (SMU).

Prerequisites
- The file server must be registered in Device Manager
- For cluster configurations, identify the target cluster name
- For non-cluster configurations, identify the target file server name
- Identify the EVS to which the target file system belongs
- Identify the name of the target file system
- Identify file share protocols, names, paths, and access permissions
- In addition, verify the following when using Hitachi NAS Platform v11.1 or later:
 - Device Manager must be linked to Admin services EVS
 - When intending to set access permissions for CIFS shares, add a CIFS server from the CIFS setup window in System Management Unit, and set up information on an authentication server (such as Active Directory).

Procedure

1. On the **Resources** tab, from the tree, select **File Servers**.
2. From the tree, select the target cluster or file server, and on the **File Systems** tab, select the file system where file shares will be added.
3. Add the file shares depending on the version of Hitachi NAS Platform:
 - **Hitachi NAS Platform v11.1 or later:**
 - Click **Add Share/Export**, specify the required items, and skip to step 4.
 - **Hitachi NAS Platform versions earlier than 11.1:**
Click Add CIFS Share or Add NFS Export, depending on the protocol of the file share you are adding. In the SMU dialog box, add the file share, and skip to step 7.

4. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

5. Click Submit.
 If the task is scheduled to run immediately, the process begins.

6. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

7. On the Shares/Exports tab of the EVS where the target file system belongs, verify the added file shares.

Result
The file shares are added to existing the file systems on the file server.

Related tasks
• Changing NAS Platform file share settings on page 252
• Deleting NAS Platform file shares on page 253

Related references
• Workflow for providing NAS Platform file shares on page 234
• File share configuration examples on page 260

Changing NAS Platform file share settings
Depending on the version of Hitachi NAS Platform you are using, edit settings for existing file shares using either HCS or System Management Unit (SMU).

Prerequisites
• The file server must be registered in Device Manager
• Identify the file share name
• For cluster configurations, identify the target cluster name of the file share
• For non-cluster configurations, identify the target file server name of the file share
• Identify the EVS to which the file share belongs
• In addition, verify the following when using Hitachi NAS Platform v11.1 or later:
 ○ Device Manager must be linked to Admin services EVS
 ○ When intending to set access permissions for CIFS shares, add a CIFS server from the CIFS setup window in System Management Unit, and set up information on an authentication server (such as Active Directory).

Procedure
1. On the Resources tab, from the tree, select File Servers.
2. From the tree, select the target cluster or file server.

3. From the tree, select the target EVS, and on the **Shares/Exports** tab, select the file share you want to modify.

4. Change the file share settings depending on the version of Hitachi NAS Platform:
 - Hitachi NAS Platform v11.1 or later:
 Click **Edit Share/Export**, specify the required items, and skip to step 5.
 - Hitachi NAS Platform versions earlier than 11.1:
 From the list of file shares, select the file share you want to modify, and click **Manage Share/Export**. In the **SMU** dialog box, change the file share, and skip to step 8.

5. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

6. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.

7. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

8. On the **Shares/Exports** tab of the target EVS, verify the modified file share settings. In SMU, click **Manage Share/Export** to verify the modified file share settings.

Result
The file share settings are changed.

Related tasks
- [Adding NAS Platform file shares](#) on page 251

Deleting NAS Platform file shares

If NAS Platform file shares are no longer needed, you can delete the file shares.

Prerequisites
Identify the name of the target file share.

Procedure

1. On the **Resources** tab, from the tree, select **File Servers**, and then select **All File Servers**.
2. From the list of file systems, select the file system that has the file shares you want to delete.
3. On the **Shares/Exports** tab, select the target file share.
 - Hitachi NAS Platform v11.1 or later:
 Click **Delete Shares/Exports**, and then skip to step 4.
Managing Hitachi NAS Platform F and Hitachi Data Ingestor file systems and shares

This module describes how to create file systems and shares for Hitachi NAS Platform F (HNAS F) and Hitachi Data Ingestor (HDI) file servers.

About managing Hitachi NAS Platform F and Hitachi Data Ingestor file systems and shares

When introducing a new Hitachi Platform F (HNAS F) or Hitachi Data Ingestor (HDI) file server, register the file server in Device Manager by using Hitachi File Services Manager (HFSM) management software, then allocate storage system volumes to the file server to create file systems and shares.

HDI tasks can be performed using HFSM. Common tasks can also be performed from the HCS GUI, for ease of use.

Depending on the HFSM software version, and the HCS version in use, tasks will either describe using HFSM, or describe using the HCS GUI.

If HFSM v3.1 or later is installed on the same server as Device Manager you can:

- Create a file system
 You can create a file system on a file server by using storage system volumes. You can also allocate volumes to the file server and create file shares at the same time you create a file system.

- Expand a file system
 You can use Top 10 File Systems from the dashboard to check for file systems with a high capacity usage. If a file system does not have sufficient free capacity, you can allocate the necessary amount of volumes to expand the file system. When settings are specified so that SNMP traps are received from the file server, you can check, by using alerts, whether the usage rate of a file system exceeds a threshold. For details about settings for receiving SNMP traps, see the Hitachi Command Suite Administrator Guide.
• Delete a file system
 You can delete file systems that are no longer required. Volumes used by those file systems can be reused for other file systems. If you do not reuse volumes for new file systems, consider releasing the volume allocation from the file server, after deleting the file systems, so the volume can be used elsewhere.

• Add file shares
 You can add file shares in response to a request from a file server user. Check the purpose of the file shares or the free capacity of the file systems, and then select a file system to which file shares are to be added.

• Edit or release file shares
 You can edit file share attributes and release unnecessary file shares. When you want to release shares that are used by both CIFS and NFS protocols, releasing one of the protocols allows both protocols to be released.

Tip: To check or change the capacity of file shares, start HFSM and then perform the operation. You can start HFSM from the Device Manager file server view.

Related concepts
- Allocating storage on page 133
- About registering and removing file servers on page 75

Related references
- Workflow for providing HNAS F and HDI file shares (HFSM) on page 255
- File share configuration examples on page 260

Workflow for providing HNAS F and HDI file shares (HFSM)
If Hitachi File Services Manager (HFSM) v3.1 or later and Device Manager are installed on the same server, you can create file systems and file shares from the Device Manager window for HNAS F or HDI file servers.

Tip: If Device Manager and HFSM are installed on different servers, or if the version of a linked HFSM is earlier than v3.1, use Device Manager to allocate volumes to the file server before using HFSM.

The workflow for registering a file server to provide file systems and shares is indicated in the following figure:
• Register a file server
By setting Device Manager information in HFSM, file server information managed in HFSM is sent to Device Manager to register file servers to be managed by Device Manager.

• Allocate volumes
Use Device Manager to allocate volumes to a file server. If HFSM v3.2 or a later version and Device Manager are installed on the same server, volumes that match the requirements can be automatically allocated when the file system is created.

• Create a file system
Create a file system and a file share. The creation procedure varies depending on the version of HFSM, which is installed on the same server as Device Manager.
 ○ HFSM v3.2 or later
 You can use Device Manager to create a file system. You can also allocate volumes to the file server and create file shares in a batch operation at the same time you create a file system. When the capacity of the file system to be created is specified, a volume allocation plan is automatically provided. A volume that is already allocated to the file server can also be used. If allocation is performed by specifying one file server (node) in a cluster, volumes are also automatically allocated to the other file server (node).
 ○ HFSM v3.1
 You can create a file system and a file share by starting the HFSM dialog box from the Device Manager window.
Creating HNAS F or HDI file systems (HFSM v3.2 or later)

If Hitachi File Services Manager (HFSM) v3.2 or later is installed on the same server as Device Manager, you can allocate volumes to HNAS F or HDI file servers, create a file system, and create file shares in a batch operation. You can also use volumes already allocated to the file server to create a file system.

Note: To use a volume that has already been allocated, alternate paths belonging to the same host group are set between the file server and volume.

Prerequisites

- Identify the name of the target cluster or target file server.
- Identify the name and capacity of the file systems to be created.
- Identify the file share protocol if creating shares.

Procedure

1. On the Resources tab, from the tree, select File Servers, and then select All File Servers.
2. From the Servers/Clusters list, select the row of the target cluster, and then click Create File System. If you will use volumes that have already been allocated to a file server, select the cluster of the target file server (node) in the tree view. Select the target volumes on the Volumes tab, click Create File System, and specify the required items.
3. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
4. Click Submit.
 If the task is scheduled to run immediately, the process begins.
5. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.
6. Select the target cluster, and on the **File Systems** tab, verify the created file system. Select the target file system, and then on the **Shares** tab, verify the created file share.

Result

The file system and file shares are created on the file server.

For details about the requirements for the environment settings of the file server, see the *Hitachi Command Suite Administrator Guide*.

Related tasks

- [Changing HNAS F or HDI file system settings (HFSM v3.1 or later)](#)
- [Deleting HNAS F or HDI file systems](#)

Related references

- [Workflow for providing HNAS F and HDI file shares (HFSM)](#)
- [File share configuration examples](#)
- [Notes on performing quick formats](#)

Creating HDI file systems (HFSM v3.1)

When Hitachi File Services Manager (HFSM) v3.1 is installed on the same server as Device Manager, you can open an HFSM dialog box from Device Manager, and perform operations such as creating file systems on an HDI file server. You can also create file shares at the same time you create a file system.

Prerequisites

- Identify the name of the target cluster or target file server.
- Allocate volumes to the file server.
- Identify the name and capacity of the file systems to be created.
- Identify the name, protocol, and owners of file shares.

Procedure

1. On the **Resources** tab, from the tree, select **File Servers**, then select **All File Servers**.
2. From the Servers/Clusters list of file servers, select the row of the cluster of the target file server (node).
3. Click **Create File System** or **Create and Share File System**.
4. From the **HFSM** dialog box, specify the required items.
 For explanations of items and procedures in the **HFSM** dialog box, see the HFSM online help.
5. Select the target cluster in Device Manager, and on the **File Systems** tab, verify the created file system. Select the target file system, and on the **Shares** tab, verify the created file share.
Result
The HDI file system is created on the file server.

For details about the requirements for the environment settings of the file server, see the Hitachi Command Suite Administrator Guide.

Related tasks
- Changing HNAS F or HDI file system settings (HFSM v3.1 or later) on page 259
- Deleting HNAS F or HDI file systems on page 260

Related references
- Workflow for providing HNAS F and HDI file shares (HFSM) on page 255
- File share configuration examples on page 260

Changing HNAS F or HDI file system settings (HFSM v3.1 or later)
When Hitachi File Services Manager (HFSM) v3.1 or later is installed on the same server as Device Manager, you can open an HFSM dialog box from Device Manager, and perform operations such as expanding a file system and adding file shares created on an HNAS F or HDI file server.

Procedure
1. On the Resources tab, from the tree, select File Servers.
2. In the tree, select the cluster of the target file server (node), and then select the row of the target file systems in the File Systems tab.
3. Depending on the task that you are doing, click Expand File System or Add Share.
4. In the HFSM dialog box, specify the required items.
 For explanations of items and procedures in the HFSM dialog box, see the HFSM online help.
5. Select the target cluster in Device Manager, and on the File Systems tab, verify the expanded file system. Select the target file system, and on the Shares tab, verify the added file share.

Result
The file system settings are changed.

Related tasks
- Creating HDI file systems (HFSM v3.1) on page 258
- Creating HNAS F or HDI file systems (HFSM v3.2 or later) on page 257

Related references
- Workflow for providing HNAS F and HDI file shares (HFSM) on page 255
Deleting HNAS F or HDI file systems

You can delete HNAS F or HDI file systems when they are no longer needed. Save required data prior to deleting the file system.

Prerequisites

Identify the name of the target file system.

Procedure

1. On the Resources tab, from the tree, select File Servers, and then select All File Servers.
2. From the list of file systems, select the file system that you want to delete.
 You can delete the file systems of HFSM v3.2 or later and HFSM v3.1.
3. Click Delete File Systems.
4. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
5. Click Submit.
 If the task is scheduled to run immediately, the process begins.
6. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.
7. From the All File Servers list of file systems, verify the deleted file system.

Result

The file system you deleted no longer appears in the list of file servers.

File share configuration examples

File systems can be shared in several ways, for example, sharing file system root directories, or sharing specific file system sub-directories.

In the illustration below, multiple root file systems have been shared (specified as an export point).
In the illustration below, multiple file system sub-directories have been created using a single file system, and shared (specified as an export point).

Related concepts
- About managing Hitachi NAS Platform file systems and shares on page 231
- About managing Hitachi NAS Platform F and Hitachi Data Ingestor file systems and shares on page 254

Related tasks
- Adding NAS Platform file shares on page 251
- Creating HNAS F or HDI file systems (HFSM v3.2 or later) on page 257
- Creating HDI file systems (HFSM v3.1) on page 258
Related references

- Workflow for providing NAS Platform file shares on page 234
- Workflow for providing HNAS F and HDI file shares (HFSM) on page 255
Managing virtual storage machines

Virtual storage machines are used to achieve continuous access to data for global-active device volumes and for data migration.

- About virtual storage machines
- Prerequisites for allocating resources to virtual storage machines
- Creating virtual storage machines
- Allocating volumes to hosts by using virtual storage machine resources
- Editing virtual storage machines
- Deleting virtual storage machines
About virtual storage machines

Global storage virtualization provides an abstraction layer between open systems hosts and storage systems. This layer enables non-disruptive storage management, such as:

- Non-disruptive host access to global-active device volumes which consist of a P-VOL and an S-VOL that reside on different storage systems.
- Non-disruptive host volume data migration from a source volume on an existing storage system to a target volume on a new storage system.

The features described above are accomplished through the use of virtual storage machines.

There are two types of virtual storage machines within the VSP G1000 storage system:

- Default virtual storage machine
 One default virtual storage machine is created by default. The virtual information for the default virtual storage machine uses the same values as the physical information. Initially, all resources added to user-defined virtual storage machines are allocated from the default storage machine. Allocated resources are stored in the automatically created resource group (resource pool) when the virtual storage machine is created.

- User-defined virtual storage machines
 You can have a maximum of eight virtual storage machines for a single VSP G1000. This maximum includes the default virtual storage machine and seven user-defined virtual storage machines. Resources in the resource pools of user-defined virtual storage machines are added and removed by editing the virtual storage machines.

Virtual storage machine resources and resource groups

The following resources can be added and grouped by system resource type to the virtual storage machine:

- Parity groups
- LDEV IDs
- Storage ports
- Host group numbers

User-defined resource groups defining more specific storage access can be created for the VSP G1000. You create a resource group on a virtual storage machine by allocating resources from the resource pool. You can check the resource pools on separately created virtual storage machines from the resource group list.

The following figure shows an example configuration of a virtual storage machine.
In the example configuration, the virtual storage machine is created using the model type and serial number of the Virtual Storage Platform G1000. Resources from the resource pool of the default virtual storage machine are added to the user-defined virtual storage machine. The resources are added to the VSP-11111-Pool resource pool. When Resource Group B is created on the virtual storage machine, resources from the VSP-11111-Pool are added.

Identify the target resources by verifying the correlation between the virtual information that was sent from the host administrator and the physical information. You can name a virtual storage machine relative to how the virtual storage machine is being used.

Global-active device using virtual storage machines

Global-active device employs volume replication (P-VOL and S-VOL in a bidirectional copy pair) to provide a high availability environment for hosts across storage systems and sites. The purpose of global-active device is to provide data protection and minimize data access disruptions for host applications due to storage system or site failures, as illustrated by the following figure.
1. Hosts use the SCSI Inquiry command to determine storage and device information for accessing volumes.

2. Host I/O is performed with this information.

3. During global-active device setup, the default virtual storage machine of the Primary storage is edited to include secondary storage system resources.

4. During volume allocation global-active device copy pairs are created and the virtual LDEV ID is mapped to the LDEV ID of the S-VOL. The virtual storage machine information is used to support data replication from P-VOL to S-VOL for the global-active device copy pair.

5. If the P-VOL becomes unavailable, the host accesses the S-VOL without disruption.

Data migration using virtual storage machines

For data migration using virtual storage machines, you cannot access the resources until all of the source resource data has been migrated to the destination, even if the virtual information for these resources is displayed.
During the three stages of data migration, accessing the information changes from using physical to virtual information.

- **Before data migration (using physical information)**
 Before data migration, a host uses physical information to access the migration-source resources.

- **During data migration**
 The path from the host to the storage system is changed from the migration source to the migration destination. Configure virtual information on the migration-destination resource, and then migrate the data from the migration-source resource. Changes to the resource group to which the volume belongs cannot be assigned until data migration is complete.

- **After data migration (using virtual information)**
 After all of the source resources are migrated to the destination, you can assign resources or allocate volumes to virtual storage machines. Then the host can now use virtual information to access the resources on the migration-destination storage system. For example, when a Virtual Storage Platform is replaced by a VSP G1000 and the information in Virtual Storage Platform is configured on a virtual storage machine, configuration changes are not needed. The host can view and access the volumes on the VSP G1000 virtual storage machine in the same way that the volumes were accessed on the Virtual Storage Platform.

For resources that have virtual information configured after data migration:

- User-defined virtual storage machine volumes cannot be allocated to a file server.
To manage copy pairs, such as global-active device pairs by using the resources of a virtual storage machine, review the prerequisites for system configuration. For details, see the *Hitachi Command Suite Administrator Guide*.

Related concepts

- [About resource groups](#) on page 97
- [About global-active device](#) on page 276

Related tasks

- [Creating virtual storage machines](#) on page 269
- [Editing virtual storage machines](#) on page 271
- [Deleting virtual storage machines](#) on page 273

Related references

- [Prerequisites for allocating resources to virtual storage machines](#) on page 268
- [Prerequisites for creating resource groups](#) on page 99

Prerequisites for allocating resources to virtual storage machines

The following list identifies the conditions for resource allocation to virtual storage machines.

The following resources can be allocated to a virtual storage machine for a Virtual Storage Platform G1000.

- **Parity Groups**: Includes parity groups in external storage systems. When you register a part of a parity group that is part of a concatenated parity group to a virtual storage machine, other parity groups that are a part of the concatenated parity group will also be registered in the same virtual storage machine automatically.

- **LDEV IDs**: Includes volumes in external storage systems. LDEV IDs can be added only if they are not allocated to a host and do not have virtual information. Non-existent IDs can also be specified.

- **Storage Ports**: Includes storage system ports.

- **Host Group Numbers**: Host group numbers can be added only if they are not allocated to a host and do not have virtual information. Non-existent numbers can also be specified.

Note the following additional conditions:

- If the LDEV ID of a DP volume is registered to a virtual storage machine, you can also view the DP pool to which the DP volume belongs and the DP pool volumes that compose the DP pool.
• If a DP pool volume is registered to a virtual storage machine, other volumes that compose the DP pool are automatically registered to the same virtual storage machine.

Related concepts
• About virtual storage machines on page 264

Related tasks
• Creating virtual storage machines on page 269
• Editing virtual storage machines on page 271

Creating virtual storage machines

You can create a maximum of seven virtual storage machines for a single VSP G1000. Resources specified, such as parity groups or LDEV IDs, are added to the resource pools on the user-defined virtual storage machines.

Prerequisites
Serial number, if you are specifying a storage system that is not registered with HCS.

Procedure
2. In the application pane, click Create Virtual Storage Machine.
3. Enter a name for the virtual storage machine.
4. Choose one of the following options to specify the virtual model and serial number.
 • Click Select a storage system already registered on HCS from list.
 • Click Specify manually, select a model from the list, and then specify a virtual serial number.
5. On the Storage Systems tab, click Add Storage Systems, and then select the storage system to add.
 Displays the storage system and the resources in the storage system that can be added to the virtual storage machine. Resources are organized by resource type, such as parity groups, LDEV IDs, storage ports, and host group numbers.
6. (Optional) On the Parity Groups tab, click Add Parity Groups, select the parity groups from the list, and then click OK.
7. (Optional) On the LDEV IDs tab, click Add LDEV IDs, specify the number of LDEV IDs or select available LDEV IDs to add from a table, and then click OK.
8. (Optional) On the Storage Ports tab, click Add Storage Ports, select the storage ports to add, and then click OK.
9. (Optional) On the Host Group Numbers tab, click Add Host Group Numbers, specify storage ports and the number of host group numbers to add per port, or specify host groups from a list, and then click OK.

10. Click Submit.
If the task is scheduled to run immediately, the process begins.

11. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result
The user-defined virtual storage machine is created and can be viewed in the list of virtual storage machines.

Related concepts
• About virtual storage machines on page 264

Related references
• Prerequisites for allocating resources to virtual storage machines on page 268

Allocating volumes to hosts by using virtual storage machine resources

The storage administrator can allocate volumes to hosts by using the resources of a virtual storage machine. The volumes of the default virtual storage machine can also be allocated. The default virtual storage machine is created in VSP G1000.

Prerequisites
• Identify the name of the target host.
• The volumes to be allocated must satisfy one of the following conditions:
 ○ The volumes must belong to the same virtual storage machine to which the host group of the target host belongs.
 ○ The volume must belong to the resource pool of the default virtual storage machine.

Procedure
1. On the Resources tab, select Hosts.
2. Expand the tree and select an operating system.
3. Select one or more hosts and click Allocate Volumes.
4. Select the No. of Volumes and enter the Volume Capacity.
5. From the list of storage systems, select the physical storage system.
6. From the list of virtual storage machines, select the virtual storage machine that contains the volumes to be allocated.
Note: When allocating volumes from the default virtual storage machine, you do not need to select a virtual storage machine. The default virtual storage machine is selected by default.

7. Select the volume type and volume location.
8. Click Advanced Options to specify tier, drive type, drive speed, RAID level, or parity group in the volume criteria. The storage system will search for volumes that match the criteria.
9. Click LUN Path Options to configure the number of LUN paths to allocate per host and assign or change LUN paths.
10. (Optional) Click Host Group and LUN Settings to configure the host group settings and LUN number.
11. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
12. (Optional) Update the task name and provide a description.
13. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
14. Click Submit. If the task is scheduled to run immediately, the process begins.
15. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.
16. On the Resources tab, select hosts to verify that volumes have been allocated. The virtual information is set to the allocated volumes. When a default virtual storage machine volume is allocated, the volume is registered to the virtual storage machine to which the host groups belong.

Tip: When you are canceling volume allocation, you can delete the virtual information and move the volume to the default virtual storage machine.

Related references
- Prerequisites for allocating volumes on page 192

Editing virtual storage machines

You can add resources or remove resources from a virtual storage machine. You can also change the name of the virtual storage machine.

To support global-active device pairs, edit the virtual storage machine to add secondary storage system resources to a default or user-defined virtual storage machine on the primary storage system to provide a single view of the primary and secondary storage system resources.
Prerequisites

From the host, unallocate volumes that are related to resources that belong to the virtual storage machine you are removing.

Procedure

1. On the Administration tab, select Virtual Storage Machine, select a virtual storage machine in the list, and then click Edit Virtual Storage Machine.

 ![Note: If you are performing a global-active device setup, click Edit Virtual Storage Machine on the Set Up Global-Active Device window.]

2. Verify the Name and Virtual Model and Serial No. of the virtual storage machine that you are modifying. If you are setting up a global-active device pair, verify that the virtual storage machine is on the primary storage system.

3. Add or remove resources, such as parity groups or LDEV IDs, on the virtual storage machine. If you are setting up a global-active device pair, click Add Storage Systems, select the secondary storage system, and then click OK. Then add secondary storage system resources, such as Parity Groups, LDEV IDs, Storage Ports, and Host Group Numbers to the virtual storage machine.

 ![Note: If you are performing a global-active device setup, the primary storage system resources already belong to the default virtual storage machine.]

4. When you are finished adding resources, enter an optional task description, select whether you want to view the progress of the task, and then click Submit.

5. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

The selected virtual storage machine is edited and can be verified in the list of virtual storage machines. If you are creating a global-active device pair, you have a single view of the primary and secondary storage system resources.

Related concepts

- About virtual storage machines on page 264

Related references

- Prerequisites for allocating resources to virtual storage machines on page 268
Deleting virtual storage machines

You can delete virtual storage machines that are no longer required. Deleting a virtual storage machine also deletes all of the virtual information about the resources that belong to that virtual storage machine and removes the resources from the virtual storage machine.

Prerequisites

From the host, unallocate the volumes that belong to the virtual storage machine that you are deleting.

Procedure

2. From the list of virtual storage machines, select the virtual storage machine that you want to delete and click Delete Virtual Storage Machine.
3. Click Submit.
4. On the Tasks & Alerts tab, confirm the task completion.

Result

The selected virtual storage machine is deleted.

Related concepts

- About virtual storage machines on page 264
Replicating volumes for continuous access

Volume replication is used for creating in-system or remote storage system volume copies for data protection. Global-active device provides copy pair replication for active-active high availability in a multi-site environment.

- About global-active device
- Setting up a global-active device environment
- Monitoring and managing global-active device pairs
- Recovering from global-active device failures
- Discontinuing a global-active device environment
- Volume replication
About global-active device

Global-active device employs volume replication (P-VOL and S-VOL in a bi-directional copy pair) to provide a high availability (HA) environment for hosts across storage systems and sites. The purpose of global-active device is to provide data protection and minimize data access disruptions for host applications due to storage system or site failures.

A virtual storage machine represents storage resources such as parity groups and LDEVs (volumes). To support global-active device read/write operations, resources of the primary storage system (Serial #1) and secondary storage system (Serial #2) are defined in the virtual storage machine to provide a single view of the primary and secondary storage system resources.

As shown in the following figure, volumes on the secondary storage system are assigned a virtual LDEV ID that matches the physical LDEV ID of volumes belonging to the default virtual storage machine on the primary storage system. The host can then access the primary or secondary volume by using the same LDEV ID (01). This occurs when you create a global-active device pair during volume allocation.

In addition to the example above, if the Virtual Storage Platform G1000 microcode version in both the primary and secondary storage systems is 80-02-01-XX/XX or later, you can also create a global-active device pair by setting, as the P-VOL, a volume that already has a virtual LDEV ID assigned and whose resources are managed by user-defined virtual storage machines, such as a volume migrated by nondisruptive migration. If you register a P-VOL for a user-defined virtual storage machine, the virtual LDEV ID of volumes on the primary storage system are used.
The global-active device environment resolves the details of all read/write activity to the global-active device pair. For example, when the host writes data to LDEV ID 01, data is replicated to LDEV ID 02. If the host path to primary storage fails, the host can continue to perform read/write operations using the secondary storage volume.

When a global-active device pair is established, application server high-availability benefits include:

• Continuous I/O:
 If a primary volume becomes unavailable, the host will continue to transparently access the secondary volume.

• Clustered host failover:
 You do not need to perform storage system tasks, such as suspending or re-syncing a global-active device pair to recover from a host failure.

• Virtual machine migration:
 If a server is running a virtual machine creating a high load, you can move the virtual machine to the host at the other site, which can access the same data, so data migration between storage systems is unnecessary.

A global-active device environment can be implemented within a single site or across two sites or three sites. Implementation across three sites provides the best protection against site failures because the primary, secondary, and quorum storage systems exist at different physical locations, or sites, as shown in the following figure.
In the figure above:

- The primary, secondary, and quorum storage systems are located across three sites, typically separated by short distances (campus) or intermediate (metro) distances. Distance can affect the required path management software for hosts. The primary and secondary storage systems must be VSP G1000 storage systems. The quorum storage system monitoring the status of the primary and secondary storage can be any external storage system that supports virtualization of its volumes and is physically connected using Fibre Channel or Fibre Channel over Ethernet (FCoE) to 'External' ports configured on the primary and secondary storage systems. Supported external storage systems are identified, with their required port attributes, in the *Hitachi Virtual Storage Platform G1000 Hitachi Universal Volume Manager User Guide*.

- The HCS management servers are clustered across two sites in an active-standby configuration. The active node is used to manage both sites. The standby node takes over site management if the active node fails. In addition to Device Manager and Tiered Storage Manager, Replication Manager is installed and licensed on both nodes for performing pair management tasks.
Note: In a global-active device environment, a single HCS management server node should be used to discover the primary, secondary and quorum storage systems, and the required hosts and pair management servers at the primary and secondary sites. A complete view of resources is required for HCS global-active device setup tasks, for allocating global-active device pairs using the pair management servers, and for displaying P-VOL/S-VOL I/O metrics in the Analytics tab.

If you discover resources by using separate management servers located at the primary and secondary sites, you cannot use HCS to perform global-active device setup tasks, or Device Manager to allocate global-active device pairs. Instead, use Replication Manager for pair configuration and pair management.

- Pair management servers are located at both the primary site and secondary site. Each pair management server must include Device Manager Agent and Command Control Interface (CCI) to perform pair management tasks as directed by HCS, or directly from the pair management server itself. Command devices (CMD) are used for processing pair management commands. The primary and secondary site pair management servers are used by the HCS management server for global-active device pair operations.

- The application servers are clustered across two sites with HBA (Fibre Channel) paths to both storage systems. Application servers can be configured in an active-standby or active-active cluster. In an active-active cluster configuration both nodes can perform read-write I/O. Depending on the multi-path software being used, an application server can use any available path to access data, or will use the shortest available path if configured to do so, meaning an application server at the primary site would read data from primary site storage, and an application server at the secondary site would read data from secondary site storage. Write I/O to global-active device pairs results in the same data being written to the pair, regardless of which storage system and port the write I/O occurs on. Data is always written to the primary volume first, then the secondary volume using the physical remote path (MCU/RCU) connections for bi-directional data transfers.

Note: Hitachi Dynamic Link Manager (HDLM) provides features for identifying non-preferred (longer) paths for I/O, ensuring the use of the shortest I/O path under normal conditions. If a path failure occurs, the longer path is used for I/O. This optimizes I/O performance while retaining high-availability. See the Hitachi Command Suite Dynamic Link Manager User Guide for your host OS.
If the host OS is HP-UX 11iv3 and you are using the native multi-pathing features, execute the following command in advance to disable the multi-pathing features for legacy device special files:

```
scsimgr save_attr -a leg_mpath_enable=false
```

The following workflow describes the necessary planning and implementation steps for creating, monitoring and managing a global-active device environment.
For detailed information on site requirements, hardware setup, operational detail, and recovery recommendations, see the following:

- **Hitachi Virtual Storage Platform G1000 Global-Active Device User Guide**
- **Hitachi Command Suite Administrator Guide**
- **Hitachi Command Suite System Requirements**
Setting up a global-active device environment

After the HCS management server has discovered resources, you can use the Set up Global-Active Device window for setup tasks that must be performed before global-active device pairs can be allocated.

About global-active device setup

The global-active device setup window provides a workflow for configuring required storage system resources before global-active device paired volumes can be allocated.

Access to the global-active device setup window is provided from:

- The Actions menu on the global task bar
- The Replication tab, from General Tasks

The setup window provides access to various HCS or Replication Manager dialog boxes. As tasks are completed, or if tasks have already been completed by other procedures, the setup window identifies completed tasks and provides a link to configuration details. If you close the setup window and reopen it later, the completed tasks remain identified.
The following figure depicts the setup window configuration items in the global-active device environment:

- Select Storage Systems (see below, this task must be done first)

Note: When global-active device pairs are allocated, the primary storage system contains the P-VOLs and the secondary storage system contains the S-VOLs.

The following setup tasks can be performed in any order, but must be completed before allocating global-active device pairs.

- Configure Remote Paths (see ①)
- Configure Quorum Disks (see ①)
- Configure Pair Management Servers (see ①)
- Configure Virtual Storage Machines (see ①)
Prerequisites for global-active device setup

Before performing global-active device setup tasks, ensure the following prerequisites are met:

- The Virtual Storage Platform G1000 microcode version for both the primary and secondary storage systems must be 80-02-01-XX/XX or later.
to create global-active device pairs where the P-VOLs already have a
virtual LDEV ID assigned and are managed by user-defined virtual storage
machines, as with nondisruptive migration. This requirement is not
necessary for global-active device pairs created by adding secondary
storage resources to the primary storage default virtual storage machine.
• Global-active device has been licensed (which includes Replication
Manager).
• Replication Manager is installed and linked to HCS.
• A pair management server is installed with Device Manager Agent and
Command Control Interface (CCI) at the primary and secondary storage
sites.
• The external port of the primary and secondary storage systems are
connected to the quorum storage system by Fibre Channel or Fibre
Channel over Ethernet.
• You have registered (discovered) the primary, secondary, and quorum
storage systems.

Related concepts
• About global-active device on page 276
• About global-active device setup on page 282

Related tasks
• Registering a storage system on page 57
• Creating virtual storage machines on page 269

Select primary and secondary storage systems
Select primary and secondary storage systems listed by the global-active
device setup. Only valid storage systems with the correct firmware revision
are listed.

Procedure
1. Open the global-active device setup window:
 • From the Actions menu, select Set up Global-Active Device.
 • On the Replication tab, General Tasks, select Set up Global-
 Active Device.
2. On the Set up Global-Active Device window, click Select Storage
 Systems.
3. From the Select Storage Systems window, select the primary storage
 system from the list of available storage systems.
4. Select the secondary storage system from the list of available storage
 systems.
5. If given the option, select a default or user-defined virtual storage
 machine on the primary storage system in which global-active device
 pairs will be created.
6. Confirm the selected storage systems and virtual storage machine information are correct and click **OK**.
 The selected information is displayed on the setup window as confirmation.

Result
The storage systems and virtual storage machine are selected, and become default values for the remaining setup tasks.

Related concepts
- [About global-active device](#) on page 276
- [About global-active device setup](#) on page 282

Configuring remote paths
Configure remote paths between the primary and secondary storage systems.

Prerequisites
The primary and secondary storage systems have been selected.

Procedure
1. Open the global-active device setup window:
 - From the **Actions** menu, select **Set up Global-Active Device**
 - On the **Replication** tab, **General Tasks**, select **Set up Global-Active Device**
2. From **Configure Remote Paths**, click **Create Remote Paths**.
 The **Create Remote Path** wizard opens.
3. On the **Select Remote Storage System** page:
 a. Verify that **Copy Type** is set to **Universal Replicator/global-active device**.
 b. Verify the displayed **Primary Storage System** and **Secondary Storage System** information, and click **Next** to define paths.

Tip: The MCU/RCU checkbox is disabled by design for the global-active device dialog.

4. On the **Define Remote Path** page:
 a. Ensure that the **Select reverse direction path** checkbox is selected.
b. (Optional) Enter a Label for identifying the remote paths for global-active device.
c. (Optional) Enter a non-default Path group ID.
d. Using the Local Port and Remote Port lists, select the Initiator and RCU target ports from the Existing Ports list for both the primary and secondary storage systems.

Tip: The port list on the left shows primary to secondary storage ports, and the port list on the right shows secondary to primary storage ports. Note that the listed existing ports are unallocated host ports, meaning a port attribute of target not in use by any hosts.

e. Click Next to review the remote path settings.

5. On the Confirm page:
 a. Under Initiator/RCU Targets, review selected ports and port attribute settings (before and after).
 b. In the Remote Path area, check the copy direction for the local and remote port pairs. If the port pairs are correct, select the confirmation message checkbox, and click Confirm to set the port attributes (Initiator or RCU Target).

Tip: Port pairs on the left (Local -> Remote) are primary to secondary storage remote paths. Port pairs on the right (Local <- Remote) are the secondary to primary storage remote paths.

Note: For more information about remote paths, see the Hitachi Command Suite Replication Manager User Guide.

Result
The remote paths between the primary and secondary storage systems are configured, and can be confirmed by clicking Show Details.

Related concepts
- About global-active device on page 276
- About global-active device setup on page 282

Configuring the quorum disk
The quorum disk detects the status of the primary and secondary storage systems. Configure the quorum disk by selecting a volume and virtualizing it as an external volume of the primary and secondary storage systems.

Prerequisites
The primary and secondary storage systems have been selected.
Procedure

1. Open the global-active device setup window:
 - From the **Actions** menu, select **Set up Global-Active Device**
 - On the **Replication** tab, **General Tasks**, select **Set up Global-Active Device**

2. From **Configure Quorum Disks**, click **Select Volume**.

3. In the **Select Volume** window, select a **Storage system** to provide the quorum disk, and then do one of the following:
 - From the **Available Volumes** list, select a volume, click **OK**, and then go to step 12.
 - If no suitable volume is listed, click **Create Volumes**. Optionally, select **Advanced Options** to configure volume options or specify a quorum disk label.

4. In the **Create Volumes** window, create a volume to be used as the quorum disk.

5. From the **Volume Type** list select a volume type.

6. (Optional) Click **Advanced Options** to configure volume options or specify a quorum disk label.

7. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

8. (Optional) Update the task name and provide a description.

9. (Optional) Expand **Schedule** to specify the task schedule. You can schedule the task to run immediately or later. The default setting is **Now**.

10. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.

11. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

12. From **Configure Quorum Disks**, for the primary storage, click **Virtualize Volumes**.

13. In the **Virtualize Volumes** dialog box:
 a. Verify the external and internal storage systems are correct.
 b. Click **Edit External Paths** to set or change external paths.
 c. (Optional) Select **External Path Priority Settings** to increase or decrease path priority.
 d. Select **Internal Volume Configuration** and verify that **Change Internal Volume(s) to Quorum Disk(s)** is selected by default. The default ID is recommended, but can be changed to another value if necessary.

14. Click **Show Plan** and submit the task.

15. Repeat steps 12 through 14 for the secondary storage system.
 Note that for the secondary storage system, the secondary storage system name will be displayed.
Result
The quorum disk is created and virtualized for both the primary and secondary storage, and can be confirmed by clicking Show Details.

Related concepts
- About global-active device on page 276
- About global-active device setup on page 282

Related references
- Create Volumes dialog box on page 141
- Virtualize Volumes dialog box on page 155

Configuring pair management servers
Configure the command devices for the pair management servers from the primary and secondary storage systems. Command devices are used to communicate pair management directives.

Prerequisites
The primary and secondary storage systems have been selected.

Procedure
1. Open the global-active device setup window:
 - From the Actions menu, select Set up Global-Active Device
 - On the Replication tab, General Tasks, select Set up Global-Active Device
2. From Configure Pair Management Server, click Allocate Volumes for the primary storage system.
3. In the Allocate Volumes dialog box, verify that the Storage System is correct.
4. For Host, select the pair management server for the storage system.
5. Click Advanced Options, verify that Command Device is checked, and that User Authentication is Enabled.
6. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.
7. (Optional) Update the task name and provide a description.
8. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now.
9. Click Submit.
 If the task is scheduled to run immediately, the process begins.
10. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.
11. Repeat steps 2 through 10 for the secondary storage system. For **Host**, be sure to specify the pair management server for the secondary storage system.

12. Ensure that the pair management servers recognize the command devices, and then from **Configure Pair Management Server**, click **Refresh Hosts**.

Result
The command devices for the primary and secondary pair management servers are allocated, and pair management server information is current, and can be confirmed by clicking **Show Details**.

Related concepts
- [About global-active device](#) on page 276
- [About global-active device setup](#) on page 282

Related references
- [Allocate Volumes dialog box](#) on page 200

Configuring the virtual storage machine
To support global-active device pairs, add secondary storage system resources to the default or user-defined virtual storage machine on the primary storage system. Configuring the virtual storage machine provides a single view of the primary and secondary storage system resources.

Prerequisites
The primary and secondary storage systems have been selected in the Set up Global-Active Device window.

Procedure
1. Open the global-active device setup window:
 - From the **Actions** menu, select **Set up Global-Active Device**
 - On the **Replication** tab, **General Tasks**, select **Set up Global-Active Device**

2. From **Configure Virtual Storage Machine**, click **Edit Virtual Storage Machine**.

3. In the **Edit Virtual Storage Machine** dialog box, on the **Storage Systems** tab, verify that the displayed **Name** and **Virtual Model and Serial No.** show the primary storage system values and that the primary storage system is listed.

4. Click **Add Storage Systems**, select the secondary storage system, and then click **OK**.
5. Add secondary storage system resources, such as **Parity Groups**, **LDEV IDs**, **Storage Ports** and **Host Group Numbers** to the virtual storage machine by clicking the respective tabs.

Note: The primary storage system resources already belong to the virtual storage machine.

6. When you are finished adding resources from the secondary storage system, enter an optional task description, select whether you want to view the progress of the task, and then click **Submit**.

Result
The storage system resources are configured for the virtual storage machine.

Related concepts
- [About global-active device](#) on page 276
- [About global-active device setup](#) on page 282

Related tasks
- [Creating virtual storage machines](#) on page 269
- [Editing virtual storage machines](#) on page 271

Monitoring and managing global-active device pairs
This module describes the required tasks to allocate, monitor, and unallocate global-active device pairs for hosts.

Allocating global-active device pairs
Allocate new global-active device pairs to hosts (application servers). When you allocate global-active device pairs, an initial copy is performed for the primary and secondary volumes.

Procedure
1. On the **Resources** tab, **General Tasks**, select **Allocate Volumes**.

Tip: If you do not see **Allocate Volumes** listed, click **more...** to see all menu items.

2. In the **Allocate Volumes** dialog box, select the hosts for the global-active device pair.

Note: File-servers are not supported for global-active device pair allocations.

3. For **Allocation Type** select **global-active device**.
4. Specify the number and capacity of the volumes.
5. On the **Primary** tab, configure the following options:
 a. Select the primary **Storage system**, **Virtual Storage Machine**, and **Volume type** (HDP or HDT).
 Only valid storage systems and virtual storage machine information is displayed. If you specify HDP as the volume type, select the **Volume location**. If you specify HDT as the volume, the **Volume Selection** options are available. You cannot allocate Basic volumes.
 b. Click **Advanced Options** for further configuration.
 c. In **LUN Path Options**:
 Edit LUN paths from primary storage ports to hosts.
 d. Click **Host Group and LUN settings** for further configuration.
 e. In **Pair management Server Settings**:
 Select an available host as the pair management server. For Instance ID, click **Existing** to use a current configuration definition file and related instance ID number on the pair management server, or click **New** to create a new configuration definition file, and enter a new instance ID number which will be validated as an available instance ID. You can also specify a **UDP Port** number for the instance.
6. On the **Secondary** tab, configure the following options:
 a. Select the secondary **Storage system**, **Virtual Storage Machine**, and **Volume type** (HDP or HDT):
 Virtual storage machine information defaults to the primary tab value.
 b. In **Advanced options**:
 Unlike the Primary tab dialog, this dialog on the Secondary tab allows you to select secondary storage system DP pools (Pools for S-VOL) that correspond to primary storage system DP pools configured on the primary tab (Pools for P-VOL). For example, automatic selection of DP volumes will display primary DP pools, and eligible secondary DP pools for volume allocation. You can examine primary tab DP pool and volume details with links. You can accept the DP pools selected for secondary volumes, or make a manual selection by clicking **Select Pool** to list and select eligible DP pools, and selecting eligible volumes from the DP pools.
 c. In **LUN Path Options**:
 Edit LUN paths from secondary storage ports to hosts. Under **LUN Path Setting Information on Primary Site**, you will see the primary storage system, and No. of LUN Paths per volume. Clicking the link will display primary storage system mapping information.
 d. Click **Host Group and LUN settings** for further configuration.
 e. In **Pair management Server Settings**:
 Select an available host as the pair management server. For Instance ID, click **Existing** to use a current configuration definition file and related instance ID number on the pair management server, or click
New to create a new configuration definition file, and enter a new instance ID number which will be validated as an available instance ID. You can also specify a UDP Port number for the instance.

7. Click Virtual ID Settings for further configuration.
 These settings are displayed only in a configuration where options other than the default virtual storage machine are used on the primary side.

8. In Pair Settings:
 Select the Quorum Disk, select new or existing in the Copy Group for management purposes, and then manually enter a name (Prefix and Start Sequence No.) or select Automatic for Pair Name and a name will be created.

9. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

10. (Optional) Update the task name and provide a description.

11. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now.

12. Click Submit.
 If the task is scheduled to run immediately, the process begins.

13. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

14. Confirm the global-active device pair is allocated.

Result
The global-active device pair is allocated to the target host, and initial copy performed. Reclaiming zero pages is also automatically performed.

Related tasks
- Allocating global-active device pairs using existing volumes on page 293
- Adding redundancy to open-allocated volumes on page 295
- Editing LUN paths on page 224

Related references
- Allocate Volumes dialog box on page 200

Allocating global-active device pairs using existing volumes
Select an existing allocated global-active device volume, and allocate a global-active device pair using the characteristics of the selected primary or secondary volume.

Procedure
1. On the Resources tab, select a global-active device volume from the Open-Allocated volume list, or for a specific host using global-active...
device paired volumes, select an already allocated volume to use in a new global-active device pair, and click Allocate Like Volumes.

Tip: Regardless of whether the primary volume (P-VOL) or the secondary volume (S-VOL) is selected as the existing volume, the settings for the existing P-VOL are used for the newly allocated primary volume and the settings for the existing S-VOL are used for the newly allocated secondary volume.

However, if characteristics such as drive type and drive speed of the existing volumes do not match between the primary and secondary storage systems, a secondary volume whose characteristics match those of the primary volume is recommended.

2. In the Allocate Like Volumes dialog box, verify the information for the selected volume and make any necessary changes.

3. On the Primary tab, configure the following options:
 a. Select the primary Storage system, Virtual Storage Machine, and Volume type (HDP or HDT).
 Only valid storage and virtual storage machine information is displayed. If volume type is HDP, select the Volume location. If volume type is HDT, the Volume Selection options are displayed. You cannot allocate Basic volumes.
 b. Click Advanced Options for further configuration.
 c. In LUN Path Options:
 Edit LUN paths from primary storage ports to hosts.
 d. Click Host Group and LUN settings for further configuration.
 e. In Pair Management Server Settings:
 Select an available host as the pair management server. For Instance ID, click Existing to use a current configuration definition file and related instance ID number on the pair management server, or click New to create a new configuration definition file, and enter a new instance ID number which will be validated as an available instance ID. You can also specify a UDP Port number for the instance.

4. On the Secondary tab, configure the following options:
 a. Select the secondary Storage system, Virtual Storage Machine, and Volume type (HDP or HDT):
 Virtual storage machine information defaults to the primary tab value.
 b. In Advanced Options:
 Unlike the Primary tab, select DP pools for the secondary storage system (Pools for S-VOL) that correspond to the DP pools configured on the primary tab (Pools for P-VOL). For example, automatic selection of DP volumes will display primary DP pools, and eligible secondary DP pools for volume allocation. You can examine primary tab DP pool and volume details with links. You can accept the DP pools selected for secondary volumes, or make a manual selection by clicking Select.
Pool to list and select eligible DP pools, and selecting eligible volumes from the DP pools.

c. In **LUN Path options**:
Edit LUN paths from secondary storage ports to hosts. **LUN Path Setting Information on Primary Site** lists the primary storage system, and No. of LUN Paths per volume. Click the link to display primary storage system mapping information.

d. Click **Host Group and LUN settings** for further configuration.

e. Click **Pair Management Server Settings** for further configuration.

5. Click **Virtual ID Settings** for further configuration.
These settings display only when options other than the default virtual storage machine are used on the primary storage.

6. In **Pair Settings**:
Select the **Quorum Disk**, select new or existing in the **Copy Group** for management purposes, and then manually enter a name (Prefix and Start Sequence No.) or select Automatic for **Pair Name** and a name will be created.

7. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

8. (Optional) Update the task name and provide a description.

9. (Optional) Expand **Schedule** to specify the task schedule.
You can schedule the task to run immediately or later. The default setting is **Now**.

10. Click **Submit**.
If the task is scheduled to run immediately, the process begins.

11. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

12. Confirm the global-active device paired volumes are allocated.

Result
The global-active device pair is allocated to the target host, and initial copy performed. Reclaiming zero pages is also automatically performed.

Related tasks
- Allocating global-active device pairs on page 291
- Adding redundancy to open-allocated volumes on page 295
- Editing LUN paths on page 224

Related references
- Allocate Volumes dialog box on page 200

Adding redundancy to open-allocated volumes

Existing open-allocated volumes in the same storage system belonging to the same host group (with the same LUN paths) can be converted to P-VOLs, and the P-VOL data migrated to S-VOLs to create a global-active device pair.
Procedure

1. On the **Resources** tab, or by searching, locate allocated volumes to convert into global-active device pairs.

2. Select the volume, and click **Change to Global-Active Device Volumes**.
 The **Change to Global-Active Device Volumes** window is displayed.

3. On the **Primary** tab, configure the following options:
 a. Verify the displayed hosts, storage systems virtual storage machines for the selected volumes.
 b. **Selected Volumes** are allocated volumes eligible to become a P-VOL in a global-active device pair. Details such as WWN, host group, and volume characteristics are displayed.
 c. In **Pair Management Server Settings**:
 Select an available host as the pair management server. For Instance ID, select **Existing** to use a current configuration definition file and related instance ID number on the pair management server, or select **New** to create a new configuration definition file, and enter a new instance ID number which will be validated as an available instance ID. You can also specify a **UDP Port** number for the instance.

4. On the **Secondary** tab, configure the following options:
 a. Verify the displayed host(s) for the selected volumes, and click **Select other Hosts** to specify more hosts that can access global-active device pairs.
 b. Select the secondary storage system where the S-VOLs will be created.
 c. Verify the displayed virtual storage machine.
 d. Click **Advanced Options** for further configuration.
 e. Click **LUN Path Options** for further configuration.
 The previously allocated primary path is displayed.
 f. Click **Host Group and LUN settings** for further configuration.
 g. In **Pair Management Server Settings**:
 Select an available host as the pair management server. For Instance ID, select **Existing** to use a current configuration definition file and related instance ID number on the pair management server, or select **New** to create a new configuration definition file, and enter a new instance ID number which will be validated as an available instance ID. You can also specify a **UDP Port** number for the instance.

5. In **Pair Settings**:
 Select the **Quorum Disk**, whether pairs should belong to a new or existing **Copy Group** for management purposes, and enter a **Pair Name** manually (Prefix and Start Sequence No.), or select Automatic and a name will be created.

6. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.
7. (Optional) Update the task name and provide a description.

8. (Optional) Expand Schedule to specify the task schedule.

 You can schedule the task to run immediately or later. The default setting is Now.

9. Click Submit.

 If the task is scheduled to run immediately, the process begins.

10. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

11. Confirm the global-active device paired volumes are created by checking volume status information.

Result

The global-active device pair has been created from open-allocated volumes, and initial copy performed. Reclaiming zero pages is also automatically performed.

Related tasks

- Allocating global-active device pairs on page 291
- Allocating global-active device pairs using existing volumes on page 293
- Editing LUN paths on page 224

Related references

- Allocate Volumes dialog box on page 200

Checking global-active device pair status

You can review information (including status) of global-active device pairs or reserved volumes from the volume list and volume details windows in HCS.

Note: You can also use Replication Manager to check global-active device pair status. Open Tools > Replication Manager and locate copy groups or pairs to view pair status. For more information about pair status, conditions under which certain copy pair statuses can be changed, and about how to change the status of a copy pair by using the Change Pair Status wizard see the Replication Manager help.

Procedure

1. Review global-active device status using one or more of the following options:

 - On the Resources tab, select Storage Systems, select a Virtual Storage Platform G1000, select Volumes, and then list Open-Allocated volumes to view global-active device information, as follows:
 - Volume Attribute
 - Copy Info (P-VOL)
 - Copy Info (S-VOL)
GAD Status

Tip: You might need to configure column settings to see global-active device information.

Click volume links to view detailed information for global-active device pairs, Quorum disks, and command devices.

- On the Resources tab, select Hosts, select an operating system, then select a host using global-active device pairs, and review volume status.
- Search for hosts or volumes to locate global-active device volumes, and review volume status.

Result
The status of global-active device pairs is displayed.

Related tasks
- Monitoring global-active device pair performance on page 299
- Protecting global-active device pairs on page 298

Protecting global-active device pairs

Using Replication Manager, configure in-system replication to further safeguard the data on global-active device pairs in use by hosts on primary and secondary storage systems.

Prerequisites
- The copy type is ShadowImage or Thin Image.
- The authentication mode is valid for the command device allocated to the pair management server.
- If the primary and secondary storage systems are managed by one pair management server, you cannot use the virtual IDs of the virtual storage machine used by the global-active device pair. To use virtual IDs, a dedicated pair management server is required for each storage system.

Procedure

1. On the global task bar, from the Tools menu, select Replication Manager.
2. Select a global-active device volume and click Pair Management. The Pair Configuration Wizard opens.
3. In the Copy Topology window, select the P-VOL, click Add Group, and in the Add Pair Group dialog box, select SI as the copy type. Click OK. The Copy Topology window graphically reflects the addition of the SI pair group to the P-VOL.
Note: When you add a copy group to an existing copy pair, it is known as a *multi-target* configuration when created on the primary side and a *cascade* on the secondary side. For more information, see the *Hitachi Command Suite Replication Manager User Guide*.

4. In the **Copy Topology** window, select the S-VOL, click **Add Group**, in the **Add Pair Group** dialog box, select **SI** as the copy type, and then click **OK**. The **Copy Topology** window graphically reflects the addition of the SI pair group to the S-VOL.

Tip: On the **My Copy Groups** tab, you can perform pair operations by clicking the icon for SI (which displays SI pair information), and clicking **Change Pair Status**.

5. Select the **Finish** page in the Pair Configuration Wizard to complete the task.

Result
The global-active device pair is further protected with in-system SI replication.

Related tasks
- [Checking global-active device pair status](#) on page 297

Monitoring global-active device pair performance
Hitachi Tuning Manager will collect and display performance information for global-active device pairs. If an administrator suspects a performance problem, or receives an alert indicating a performance problem, the administrator can investigate and resolve the issue.

Because global-active device pairs are kept synchronized, I/O issues on either the primary or secondary storage system can impact host performance. Status information and I/O metrics related to P-VOL and S-VOL performance can be examined to identify the problem, and resolve host I/O issues.

Prerequisites
- Hitachi Tuning Manager must be installed, licensed and configured.
- When selecting one member of a global-active device pair, a single Device Manager managing the pair is required for analyzing the performance of the P-VOL and S-VOL simultaneously.

Procedure
1. On the **Analytics** tab, open the **Hosts** tree, select a host OS, and then select the target host as follows:
a. Select the radio button next to the target host name, and then click **Identify Performance Problems**.
b. Click Host Name to select target host volumes, and then click **Identify Performance Problems**.

Tip: When you select volumes from a host volume list or from within the Identify Performance Problems wizard, if you select a global-active device volume in a single Device Manager environment, the P-VOL and S-VOL will both be targets for analysis. To identify global-active device volumes, use **Column Settings** to include **Copy Info (P-VOL)**, **Copy Info (S-VOL)**, **GAD Pair Status**, and **Virtual LDEV ID** in the host volume list or the Identify Performance Problems wizard.

The **Identify Performance Problems** wizard is displayed (starting on the Introduction page). Review displayed messages.

2. Click **Next**.

3. On the **Target Selection** page:
 a. If prompted, select the **Storage system type/volume type (location)**, for example VSP G1000 and DP volumes.
 b. Click **List of added volumes** to view analysis targets, including global-active device volumes.

 Note: When the global-active device pair (P-VOL and S-VOL) of a selected global-active device volume are not found in HCS, the volume cannot be set to a target for analysis. These volumes are listed separately.

 c. In **Select volumes to analyze**, **Select all** selects all listed volumes for analysis. Click **Select manually** to individually select volumes or global-active device pairs (P-VOL and S-VOL) for analysis, and then click **Add** to update the **Selected Volumes** list.
 d. For **Select time period to analyze within 30 days before the current time**, configure the time period to analyze.
 e. Click **Next**.

4. On the **Overview** page:
 a. Check the analysis results and cautions. If there is a resource that exceeds a threshold value, there might be a performance issue related to the storage system.
 b. Click **Next**.

5. On the **Volume** page:
 a. Review the **Response Time** and **IOPS** graphs displaying both P-VOL and S-VOL performance metrics.
Tip: If there is a large disparity between the performance metrics for the P-VOL and S-VOL, complete the wizard steps to investigate the issue further and determine the root cause. For example, there could be significant load variances between the connected hosts for the primary/secondary storage systems, remote path latencies, or multi-path software configuration issues.

6. Continue stepping through the **Identify Performance Problems** wizard to review further information on Cache, MP Blades, and Parity Groups.

Result
The performance metrics of global-active device pairs have been displayed for analysis.

Related concepts
- [About analyzing storage system performance](#) on page 403

Related tasks
- [Checking global-active device pair status](#) on page 297

Unallocating global-active device pairs

When a host with global-active device pairs is no longer needed, or the volume redundancy provided by global-active device pairs is no longer required, you can unallocate the global-active device pairs.

Depending on conditions, when a user unallocates global-active device volumes, the copy pair relationship will be ended, and related copy groups and configuration definition files (horcmN.conf) could be deleted as a result.

Prerequisites
- Identify the name of the target host, and the global-active device volumes to unallocate.
- If necessary, back up data on the target volumes.
- Unmount all allocated volumes that you plan to unallocate. An IT administrator might have to perform this task.

Procedure

1. Select a host OS, then select a host using global-active device volumes and click **Unallocate Volumes**.

Tip: If you select specific volumes for the host, **Unallocate Volumes** will go directly to the **Show Plan** window.

2. From the **Unallocate Volumes** dialog box, verify that the host is correct, and then select the P-VOL or S-VOL of the global-active device...
pair, and select **Unallocate global-active device pair simultaneously**.

3. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

4. (Optional) Update the task name and provide a description.

5. (Optional) Expand **Schedule** to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

6. Click **Submit**.
 If the task is scheduled to run immediately, the process begins.

7. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

Unallocated global-active device volumes are added back to the storage system Open-Unallocated volume list.

Related concepts

- [About removing hosts and releasing associated resources](#) on page 73

Related tasks

- [Unallocating individual global-active device volumes](#) on page 302
- [Discontinuing a global-active device environment](#) on page 305

Related references

- [Unallocate volumes dialog box](#) on page 216

Unallocating individual global-active device volumes

Individual global-active device primary or secondary volumes can be unallocated.

Prerequisites

- Identify the name of the target host, and the global-active device primary or secondary volume to unallocate.
- If necessary, backup data for the target volume.

Procedure

1. On the **Resources** tab, select a host OS, then select a host using global-active device volumes, and click **Unallocate Volumes**.

 Tip: If you select specific volumes for the host, **Unallocate Volumes** will go directly to the **Show Plan** window.
2. In the **Unallocate Volumes** dialog box, verify that the host is correct, and then select the P-VOL or S-VOL of the global-active device pair to unallocate.

Note: When unallocating the secondary volume, the primary volume is retained as a normal volume. When unallocating the primary volume, the secondary volume is retained as a normal volume.

3. Click **Show Plan** and confirm that the information in the plan summary is correct. If changes are required, click **Back**.

4. (Optional) Update the task name and provide a description.

5. (Optional) Expand **Schedule** to specify the task schedule.

 You can schedule the task to run immediately or later. The default setting is **Now**. If the task is scheduled to run immediately, you can select **View task status** to monitor the task after it is submitted.

6. Click **Submit**.

 If the task is scheduled to run immediately, the process begins.

7. (Optional) Check the progress and result of the task on the **Tasks & Alerts** tab. Click the task name to view details of the task.

Result

Unallocated global-active device primary or secondary volumes are added back to the storage system Open-Unallocated volume list.

Related concepts

- [About removing hosts and releasing associated resources](#) on page 73

Related tasks

- [Unallocating global-active device pairs](#) on page 301
- [Discontinuing a global-active device environment](#) on page 305

Related references

- [Unallocate volumes dialog box](#) on page 216

Recovering from global-active device failures

This module provides an overview of global-active device failures, where to find detailed information, and specific tasks that can be performed from HCS.

About global-active device failures

Failures need to be identified when they occur, and actions taken to remedy the failure and re-synchronize global-active device pairs.

Failure types include:

- Host path failures (HBAs, SAN switches, or Target ports) between hosts and primary or secondary storage systems.
• Remote path failures (Initiator/RCU Target ports) between primary and secondary storage systems.
• External storage (quorum) path failures between the external storage system and primary/secondary storage systems, or failure of the quorum disk, or failure of the quorum storage system.
• Primary or Secondary storage system failure.
• Primary or Secondary site failure.

Failures typically cause global-active device pair status to change from normal (for example, PAIR status) to some combination of status information indicating unavailability of a P-VOL, an S-VOL, or both.

For all failures (except host path failures) SIM reference codes and descriptions are used to identify the nature of the failure. For detailed information on SIMs related to the global-active device environment, related pair status information indicating the volume with the most recent data, and recovery recommendations, see the Hitachi Virtual Storage Platform G1000 Global-Active Device User Guide. When the failure has been resolved, copy pairs need to be re-synchronized using CCI or Replication Manager.

HCS can be used to perform a limited number of recovery tasks that are included in this section.

Related tasks
• Recovering from HBA-related host path failures on page 304

Recovering from HBA-related host path failures
Remedy the HBA-related host path failure that is preventing host I/O to the storage system.

A SIM is not generated from a host path failure. However, there is a failure on the physical path between the host and the storage system.

Procedure
1. Using multi-path or SAN management software, identify the failure location.
2. Remedy the failure by doing one of the following:
 • Reconnect the physical path or reconfigure the SAN to recover from the path failure.
 • If you confirm a failed HBA, replace it.
3. Using multi-path software, resume I/O for the host on the recovered path.
 Note that I/Os from the host might be resumed automatically.
Result
The failed path is operating again.

Related concepts
- About global-active device failures on page 303

Related tasks
- Editing LUN paths when exchanging a failed HBA on page 227

Discontinuing a global-active device environment
To discontinue the use of a global-active device environment, you must delete remote path settings, delete and unvirtualize the quorum disk, delete the command devices for pair management servers, and delete the virtual storage machine.

Prerequisites
- Data on affected global-active device pairs has been saved.
- All global-active device pairs are unallocated, or the global-active device S-VOLs unallocated leaving normal volumes in use by hosts.

Procedure
1. Delete global-active device remote path settings.
 a. On the Resources tab, right-click the target storage system, and select Remote Connections.
 b. To delete a remote path, select a remote connection to be deleted in the Connections (To) tab, and then select Remove Remote Paths.
 c. To delete all remote paths allocated to the secondary storage system on the primary storage system, select the remote connections to be deleted in the Connections (To) tab, and then select Remove Remote Connections.

2. Delete and unvirtualize the global-active device quorum disk.
 a. On the Resources tab, in the Storage Systems tree, select and then right-click the target storage system. From the menu, select Remote Connections.
 b. In the Remote Connections window, on the Quorum disk tab, select the quorum disk, confirm it is correct, and delete it.

 Note: To delete a quorum disk, all global-active device pairs that use the quorum disk must be unallocated.

 c. From General Tasks, select Unvirtualize Volumes. In the Unvirtualize Volumes dialog box, select the external storage system (quorum) and the internal storage system (primary or secondary...
storage system) and unvirtualize the external volume (quorum disk). Be sure to perform this for both the primary and secondary storage.

3. Delete the command devices for global-active device pair management servers.
 a. In the Unallocate Volumes dialog box, unallocate the pair management server and the command device.
 b. On the Resources tab, in the Storage Systems tree, select the primary or secondary storage system, and select Volumes. In the application area, click the System GUI link.
 c. From the volume list (LDEVs) that appear, select the command device that you want to delete.

 Tip: Look for Command Device in the Attribute column.

 d. From More Actions, select Edit Command Devices and in the dialog box that appears, delete the command device.

4. Delete the global-active device virtual storage machine and remove the secondary storage system resources from the global-active device virtual storage machine.

 Note: Before removing secondary storage system resources, you must unallocate the volumes on the global-active device virtual storage machine.

 b. Select the virtual storage machine related to global-active device pairs and click Edit Virtual Storage Machine.
 c. In the Edit Virtual Storage Machine window, select the secondary storage system, and then select Remove Storage Systems.

Result
The global-active device environment no longer exists.

Related tasks
- Unallocating global-active device pairs on page 301
- Unallocating individual global-active device volumes on page 302

Volume replication
This module describes how to replicate volumes within a storage system, and to another storage system for data protection.
About replicating volumes (pair management)

Volume replication is used to make copies of critical data for volumes allocated to hosts or file servers. You can make a local copy of a volume in the same storage system, or make a remote copy of a volume in a different storage system.

HCS provides several volume replication solutions based on pair management requirements and related licensing:

- This section addresses using a basic version of Replication Manager (included with the Device Manager license) that provides for common pair management tasks (for example, create a pair) using the Actions menu, Manage Replication.
- To use full Replication Manager functionality from the Tools menu, you must register a Replication Manager license, and launch Replication Manager with a user account that has Replication Manager permissions. You can use wizards to visualize complex replication configurations while defining, editing, viewing, and troubleshooting copy pairs.

For information about setting up Replication Manager, see the:
- Hitachi Command Suite Administrator Guide
- Hitachi Command Suite System Requirements

For information about using Replication Manager, see the:
- Hitachi Command Suite Replication Manager User Guide

- If Replication Manager and Hitachi Tuning Manager are installed and licensed, you can use the UR Performance Analysis window to check the C/T delta (time lag) trend between primary and secondary volumes, and to analyze, then resolve, possible Universal Replicator performance bottlenecks.

See About analyzing Universal Replicator performance on page 424

Note: To back up file systems created on a file server, use file server management software.

Related concepts
- Allocating storage on page 133

Related tasks
- Adding command devices on page 308
- Editing command devices on page 309
- Defining copy pairs on page 309
- Changing the status of a copy pair on page 310

Related references
- Copy pair management operations on page 308
Copy pair management operations

You can perform the following pair management functions in Hitachi Command Suite:

- Define, create, and delete open volume copy pairs
- Modify copy-pair tasks
 - create: Creates a copy pair
 - split: Separates a copy pair
 - resync: Synchronizes a secondary volume with the primary volume
 - restore: Restores the copy pair from a secondary volume to the primary volume
 - delete: Releases a copy pair and changes the status to simplex
- View information from the Hosts, Storage Systems, and Copy-Pair Configuration Definitions trees
- View tasks
- View workflows
- Add, edit, or delete command devices
- View event logs
- Switch to maintenance mode

To access other pair management functionality, you must register a Replication Manager license and log in to HCS with Replication Manager permissions.

Related concepts
- About replicating volumes (pair management) on page 307

Adding command devices

A command device supports replication operations by providing a communication channel between hosts and storage for replication commands.

Procedure

1. From the **Actions** menu, select Manage Replication to start the Replication Manager.
2. From the **Explorer** menu, select **Resources** and then **Storage Systems**.
3. Expand the tree and select the desired storage system.
4. Click the **Open** link, and then on the **Cmd Devs** tab, click **Add Cmd Devices** and add the command device.

Result

The added command device can be viewed by clicking the Open link from the storage system name shown in the Replication Manager. The list of added command devices are displayed in the Cmd Devs tab.
Editing command devices

You can edit an existing command device.

Procedure

1. From the Actions menu, select Manage Replication to start Replication Manager.
2. From the Explorer menu select Resources and then Storage Systems.
3. Expand the tree and select the desired storage system.
4. Click the Open link and then on the Cmd Devs tab click the pencil and paper icon and edit the command device.
5. Follow the instructions in the window to edit the command device.

Result

The edited command device can be viewed by clicking the Open link from the storage system name in Replication Manager. The list of edited command devices are displayed in the Cmd Devs tab.

Related tasks

- Defining copy pairs on page 309
- Changing the status of a copy pair on page 310

Related references

- Copy pair management operations on page 308

Defining copy pairs

Before you define copy pairs, determine the volumes that will be used to define copy pairs and verify that the volumes are allocated to a host.

Procedure

1. From the Actions menu, select Manage Replication to start Replication Manager.
2. Display a list of volumes from the Hosts tree or the Storage Systems tree.
3. On the **Unpaired** tab, select the volumes from which copy pairs will be defined and click **Pair Management**.
 The Pair Configuration wizard opens.

4. Follow the steps in the Pair Configuration wizard to define copy pairs.
 For details about how to specify copy-pair conditions and how to use the Pair Configuration wizard, see the Replication Manager online help.

5. From the **Explorer** menu, select **Tasks**, and then select **Tasks** again to confirm that the task was properly executed.

6. Confirm the copy-pair definitions in the **Pair Configurations** or **Storage Systems** view in Replication Manager.
 From the list of volumes associated with **Hosts** tree or **Storage Systems**, view the current copy pair status.

Tip: To display the most recent SplitTime in Device Manager after performing operations on a Copy-on-Write Snapshot or Thin Image copy pair, you need to refresh the storage system information.

Related references

- [Copy pair management operations](#) on page 308

Changing the status of a copy pair

You can change the status of a copy pair.

Procedure

1. From the **Actions** menu, select **Manage Replication** to start Replication Manager.
2. From the **Hosts** tree, select a host and click **Refresh Hosts**.
 All copy pairs associated with that host are refreshed.
3. Display the list of volumes from the **Hosts** tree.
4. Click the icon to change the pair status.
5. Change the copy pair status by using the **Change Pair Status** wizard.
 For details on the conditions under which certain copy pair statuses can be changed and on how to change the status of a copy pair by using the Change Pair Status wizard, see the Replication Manager online Help.
6. From the **Explorer** menu, select **Tasks**, then select **Tasks** again to confirm that the task is completed.
7. Confirm the copy pair status was changed by viewing the list of volumes in the **Hosts** view or the **Storage** view in Replication Manager.
 From the list of volumes in the **Hosts** tree or the **Storage Systems** tree, view the current copy pair status.
Tip: To display the most recent SplitTime in Device Manager after performing operations on a Copy-on-Write Snapshot or Thin Image copy pair, you need to refresh the storage system information.

Related concepts
- About replicating volumes (pair management) on page 307

Deleting command devices

If you decommission the pair management server, delete the command device. When you delete command devices, the communication channel between hosts and storage for replication commands is deleted.

Procedure
1. From the Actions menu, select Manage Replication to start the Replication Manager.
2. From the Explorer menu, select Resources and then Storage Systems.
3. Expand the tree and select the desired storage system.
4. Click the Open link, and then on the Cmd Devs tab select command devices and click Delete Cmd Devices.

Result
The command devices you deleted no longer appear in the list of command devices.
Optimizing storage performance

This module describes how to improve your storage.

- About optimizing storage
- About optimizing HBA configurations
- About high temperature mode
- Managing cache logical partitions
- Data mobility
- Data migration
About optimizing storage

Hitachi Command Suite allows you to manage storage by allocating volumes, expanding tiers and DP pools, and performing migration, based on information acquired from checking summaries, alerts, performance statistics, and the operating status of storage resources. Storage utilization can also be improved with effective management of HBA and cache (CLPRs) resources.

Using HDT pools, you can manage performance and capacity to optimize storage by creating parity groups in the following dynamic tiers:

- Tier 1 using parity groups for best performance
- Tier 2 using parity groups for next best performance
- Tier 3 using parity groups for capacity independent of drive type or RAID level

Common storage optimization issues include:

- If the used capacity for a DP pool has reached or exceeded its threshold, or a volume that satisfies a capacity requirement cannot be created or assigned because of insufficient unused capacity, add DP pool volumes to increase the capacity of the DP pools. If the capacity of a specific drive is insufficient when using an HDT pool, increase the capacity by mixing different drive types or RAID levels in Tier 3.
- If the usage rate of the file system has reached the threshold value, expand the file system to increase the capacity that can be allocated.
- If C/T delta values have degenerated and reached the threshold, use the Replication tab to confirm the degeneration factor and countermeasures, and use Device Manager, Replication Manager or Storage Navigator to resolve the problem.
- If the performance of a DP pool has decreased and data I/O is slow, add more DP pool volumes to distribute loads within the DP pools. Another option is to perform volume migration to distribute I/O loads on the DP pools.
- When using the HDT pool, performance problems may occur at certain times. Ensure that monitoring occurs during periods when I/O loads are occurring. You can:
 - Start or stop the monitoring/relocation process manually in accordance with known times for load changes.
 - Cancel the monitoring process during periods of low activity.
- If HDT volume applications switch between online and batch processing, it can be helpful to save optimized volume data placements, by processing method, as profiles. By applying the corresponding profile before beginning processing, the data placement that fits the characteristics of the processing method is restored.
- When using HDT pools, you want to prioritize the data relocation of HDT volumes for which capacity and access patterns vary widely, but I/O
operations decrease without relocating effectively. You can disable the relocation of HDT volumes for which the current data location presents no problems, to reduce relocation load.

- When using HDT pools, important data is allocated to the lower hardware tier because it has fewer I/O accesses. To prevent unwanted relocations, set a specific hardware tier for the HDT pool by configuring tiering (Tier 1, Tier 2, and Tier 3).
- When using HDT pools, use the flexibility of tiering to spread the data in a host volume across multiple layers of parity groups (high-speed, next highest speed, and low-speed) that are contained in a pool structured for this purpose.
- When using HDT pools, understand that if different drive types and/or RAID levels are mixed in a single tier, they will all be considered equal for data placement regardless of page access frequency. As a result I/O performance will be dependent on the drive type characteristics and RAID level on which any given page resides.
- If the load on a volume is too high when volume data is backed up to tape, create a copy pair for the volume. Then do a tape backup by using the copied volume (as a secondary volume).
- If it is not possible to assign a high-performance volume to a host because all unassigned volumes are low performance, perform volume migration so that less frequently used data is migrated to a low-performance volume, and then assign the now available high-performance volume to an appropriate host.
- If the usage frequency of an application increases, you can add an HBA and increase LUN paths to improve data transmission performance and throughput requirements.

Related concepts

- [About data mobility](#) on page 324
- [About data migration](#) on page 330
- [About optimizing HBA configurations](#) on page 315

Related tasks

- [Creating a CLPR](#) on page 318

About optimizing HBA configurations

Using HCS, optimize or maintain server HBA configurations in support of high availability and performance/throughput requirements.

The initial allocation of volumes to a server typically occurs with the allocate volumes dialog. LUN paths are established at this time. Host groups are used to control access to ports and volumes, meaning all the hosts in the group are using the same ports to access allocated volumes for the hosts.
Over time, heavily used servers might exhibit the need for improved high-availability, and/or improved I/O and throughput performance. HCS provides for the optimization and maintenance of server HBA configurations, as follows:

- For optimizing a server HBA configuration, you can add one or more HBAs to a server, and simultaneously identify one or more HBAs (WWNs) in the host group for the purpose of inheriting existing LUN path information for the newly added HBAs. This provides a fast and easy way to add HBAs, for example increasing from one HBA to two HBAs, or two HBAs to four HBAs.
- In terms of maintaining current performance levels, you can remove a failed HBA and add a new HBA, or you can add a new HBA then remove the failed HBA after the new HBA is in service.

Note that redundant HBAs can provide improved high availability, performance and throughput for a server, unless the server itself fails. The solution for server failure is clustering.

Related tasks
- Adding an HBA on page 316

Adding an HBA
Add an HBA to improve performance and throughput requirements. When adding an HBA, specify the WWN of the new HBA and then select a WWN of an existing HBA from which to model paths.

Prerequisites
- Identify the new WWN for the HBA that is being added
- Identify the WWN from which to model paths
- Verify that the new HBA is physically connected

Procedure
1. On the Resources tab, select Hosts.
2. After selecting the target operating system, select the target host row and click More Actions > Add HBAs.
3. Enter the New WWN or select a WWN from the list.
4. Enter the WWN from which to model paths or select a WWN from the list.
5. Click Add.
6. In the WWN Pairs list, verify that the listed HBA WWN combination are paired correctly.

Tip:
- If the WWN information is updated when the host is refreshed, the target WWN might not be displayed in the list. In this case, you need to manually enter the WWN of the HBA you are adding.
• To edit a WWN nickname from the list of WWN Pairs, click Edit WWN Nicknames.

7. Click Show Plan and confirm that the information in the plan summary is correct. If changes are required, click Back.

8. (Optional) Update the task name and provide a description.

9. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.

10. Click Submit.
 If the task is scheduled to run immediately, the process begins.

11. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result
When the task completes, the new WWN is added and LUN path settings are established to the host.

Related tasks
• Editing LUN paths when exchanging a failed HBA on page 227
• Editing LUN paths when adding or exchanging an HBA on page 228

About high temperature mode
For Virtual Storage Platform G1000 storage systems, you can use Hitachi Command Suite to enable high temperature mode, which is a licensed feature that allows the VSP G1000 storage system to run at higher temperatures (60.8°F to 104°F / 16°C to 40°C), saving energy and cooling costs.

When high temperature mode is disabled, the VSP G1000 storage system runs at standard temperatures (60.8°F to 89.6°F / 16°C to 32°C).

Normal and high temperature alerts
When high temperature mode is disabled, an alert displays when the temperature in the storage system exceeds 89.6°F / 32°C.

When high temperature mode is enabled, an alert displays when the temperature in the storage system exceeds 104°F / 40°C.

Caution: Before you enable high temperature mode, review the Hitachi Virtual Storage Platform G1000 Hardware Guide for restrictions and important information.
Enabling high temperature mode for VSP G1000 storage systems

For Virtual Storage Platform G1000 storage systems, you can enable high temperature mode.

Prerequisites

- You must install a valid license for this feature.

Caution: Before you enable high temperature mode, see the Hitachi Virtual Storage Platform G1000 Hardware Guide for important information.

Procedure

1. On the Resources tab, click Storage Systems, and then expand All Storage Systems and the target storage system.
2. Click Components.
3. Click Edit High Temperature Mode.
4. Click Enable (16-40 degrees C).
5. Click Finish.
6. In the Confirm window, verify the settings and enter a task name.
7. Click Apply to register the task. If the Go to tasks window for status check box is checked, the Task window opens.

Result

After the task completes, high temperature mode is enabled.

Related concepts

- About high temperature mode on page 317

Managing cache logical partitions

This module describes how to manage cache logical partitions (CLPR), including managing the assignment of resources to the CLPR.

Creating a CLPR

You can create partitioned cache as a means of providing predictable performance levels for server applications, and providing memory protection.

Caution: Creating CLPRs can significantly degrade host performance and should be performed during the initial installation and setup of the storage.
If no CLPRs have been created, the entire cache is displayed as CLPR0. When
the first CLPR is created, CLPR1 is added. Up to CLPR31 can be created.

The default cache capacity is 8 GB. CLPRs can be created by assigning the
necessary capacity from CLPR0. If you use Cache Residency, the remaining
cache capacity after subtracting the Cache Residency capacity from the cache
capacity of CLPR0 must be at least 8 GB.

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select
the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems:
 Select **Cache Partitions**.
 - For other available storage systems:
 From the **Actions** list in the application pane, select **Element
 Manager**. Refer to the documentation for the native management tool
 for your storage system.
3. On the **Cache Partitions** tab, click **Create CLPRs** to open the **Create
 CLPRs** window. **CLPR ID** displays the first available CLPR number or a
 blank if no CLPR number is available.
4. In **CLPR Name**, enter a CLPR name (maximum 16 alphanumeric
 characters). Each CLPR name must be unique. You cannot use a CLPR
 name that is already reserved.
5. In **Total Cache Size** select the cache capacity.
 The default size is 8 GB. You can select 8 GB or a higher value in
 increments of 4 GB. The maximum value is 504 GB (by subtracting 8 GB
 from the cache capacity of the storage system), but the maximum
 available capacity (by subtracting the total usage capacity of other CLPRs
 from the total capacity of the storage system) is displayed as the upper
 limit value.
6. In **Resident Cache Size** select the resident cache capacity.
 The default is 0 GB, and you can select 0 GB or higher value in
 increments of 0.5 GB. The maximum value is 504 GB (cache residency
 capacity of the storage system), but the maximum available capacity (by
 subtracting the total usage capacity of other CLPRs from the total
 capacity of the storage system) is displayed as the upper limit value.
7. In **Number of Resident Extents**, enter the number of resident cache.
 The default is 0, and you can specify 0 to 16384. The maximum available
capacity (by subtracting the total usage capacity of other CLPRs from the
total capacity of the storage system) is displayed as the upper limit value.
8. Click Add. The created CLPR is added to the Selected CLPRs table. To delete a CLPR from the Selected CLPRs table, select the CLPR and click Remove. To change the settings of an existing CLPR, select the CLPR and Change Settings to open the Change Settings window.

9. Click Finish.

10. Check the settings in the Confirm window, enter the task name in Task Name, and click Apply.

Result

The CLPR is created. A newly created CLPR has no resources (parity groups). To migrate resources to the new CLPR, see Migrating resources to and from a CLPR.

Related tasks

- Migrating resources to and from a CLPR on page 320
- Editing the settings of an existing CLPR on page 321
- Adjusting the cache capacity of a CLPR on page 322
- Deleting a CLPR on page 323

Migrating resources to and from a CLPR

After creating a CLPR, you can migrate resources (parity groups) from existing CLPRs to the new CLPR. Before deleting a CLPR, you must first migrate resources that you want to keep to other CLPRs.

Caution: Migrating resources to and from CLPRs can significantly degrade host performance and should be performed during the initial installation and setup of the storage system or during a maintenance window.

When migrating resources to and from CLPRs:
- You can migrate resources only within the same CU
- All interleaved parity groups must be in the same CLPR
- If a parity group contains one or more LDEVs that have defined Cache Residency Manager extents, you cannot migrate that parity group to another CLPR.

Procedure

1. On the Resources tab, expand the Storage Systems tree, and select the target storage system.

2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Select Cache Partitions.
 - For other available storage systems:
From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.

3. In **CLPR** on the **Migrate CLPR Resources** window, select the CLPR number to which the resource is assigned.
4. In **CU**, select the CU to which the resource is assigned.
5. In **Available Parity Groups** or **Available Virtual Volumes**, select the resource that you want to migrate, and then click **Set**. This adds the selected resource to the **CLPR** table.

 To check the information of the CLPR, select the CLPR and click **Detail** to open the **CLPR Properties** window.

6. When you are done adding resources to migrate, click **Finish**.
7. On the **Confirm** window, check the settings carefully.
8. Click **Finish**.
9. When you are ready to start the resource migration, enter the task name in the **Confirm** window, and then click **Apply**.

Result

The specified resources are migrated.

Related tasks

- **Editing the settings of an existing CLPR** on page 321
- **Creating a CLPR** on page 318

Editing the settings of an existing CLPR

You can change the following settings after creating a CLPR:

- CLPR name
- Total cache size
- Resident cache size
- Number of resident cache extents

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Select **Cache Partitions**.
 - For other available storage systems:
 - From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.

3. On the **Cache Partitions** tab, select the CLPR to be edited, and then click **Edit CLPR** to open the **Edit CLPR** window.
4. Edit the CLPR settings as follows. The CLPR number cannot be changed.
 a. In **CLPR Name**, edit the CLPR name as needed. You can use up to 16 alphanumeric characters but you cannot specify CLPR names that are already reserved.
 b. In **Total Cache Size**, edit the CLPR cache capacity as needed. The minimum cache size is 8 GB, and the size can be changed in increments of 4 GB. The maximum available capacity (by subtracting the total usage capacity of other CLPRs from the total capacity of the storage system) is displayed as the maximum size. The remaining cache capacity (by subtracting the resident cache size from the total cache size) must be 8 GB or more. Ensure that the remaining capacity in CLPR0 is at least 8 GB when selecting the total cache size or resident cache size.
 c. In **Resident Cache Size**, edit the resident cache capacity as needed. The minimum size is 0 GB, and the size can be changed in increments of 0.5 GB. The maximum available capacity (by subtracting the total usage capacity of other CLPRs from the total capacity of the storage system) is displayed as the maximum size. If resident cache exists in the selected CLPR and you select a resident cache size that is smaller than the existing resident cache, an error will occur. Before decreasing the size, check the resident cache capacity set in the selected CLPR.
 d. In **Number of Resident Extents**, edit the number of resident cache extents as needed. You can specify from 0 to 16384. The maximum available capacity (by subtracting the total usage capacity of other CLPRs from the total capacity of the storage system) is displayed as the maximum value. If resident cache exists in the selected CLPR and you select fewer resident cache extents than the existing number of extents, an error will occur. Before decreasing the number, check the number of resident extents set in the selected CLPR.

5. When you are done editing the CLPR settings, click **Finish**.
6. On the **Confirm** window, check the settings carefully.
7. When you are ready to change the settings, enter the task name in the **Confirm** window, and then click **Apply**.

Result
The specified resources are changed.

Related tasks
- [Adjusting the cache capacity of a CLPR](#) on page 322
- [Creating a CLPR](#) on page 318

Adjusting the cache capacity of a CLPR
You need to adjust the cache capacity of a CLPR when Cache Residency Manager operations decrease the cache capacity of the CLPR.
Procedure

1. Cancel the Cache Residency Manager bind mode or priority mode setting.
2. Edit the settings of an existing CLPR to change the cache capacity of the CLPR.
3. Set the bind mode or priority mode again.

Result
The cache capacity is adjusted.

Related tasks
• Creating a CLPR on page 318
• Editing the settings of an existing CLPR on page 321

Deleting a CLPR

You can only delete CLPRs that you created. CLPR0 cannot be deleted.

Caution: The delete CLPR operation deletes all resources and data in the CLPR. Before deleting a CLPR, migrate all resources that you want to keep (for example, parity groups) to another CLPR that will not be deleted.

Procedure

1. On the Resources tab, expand the Storage Systems tree, and select the target storage system.
2. Choose one of the following options.
 • For Virtual Storage Platform G1000 storage systems: Select Cache Partitions.
 • For other available storage systems: From the Actions list in the application pane, select Element Manager. Refer to the documentation for the native management tool for your storage system.
3. On the Cache Partitions tab, select the CLPR that you want to delete, and then click Delete CLPRs to open the Delete CLPRs window.
4. In the Selected CLPRs table, check the CLPR that you want to delete. If you want to cancel the deletion, click Cancel to go back to the Cache Partitions tab.
5. Click Apply.

Result
The CLPR is deleted.

Related tasks
• Migrating resources to and from a CLPR on page 320
Data mobility

An administrator can obtain information required to see the operating status of storage resources and optimize data placement.

About data mobility

The Mobility tab provides information required to see the operating status of storage resources and optimize data placement.

To efficiently use a storage resource, use the Mobility tab to optimize the data arrangement. In the Mobility tab, information used to determine whether the data arrangement is appropriate is collectively displayed. In addition, you can use the Mobility tab to centrally perform operations regarding moving data such as data migration. To use the Mobility tab, you must first register a Tiered Storage Manager license. Using Mobility tab information, you can evaluate and analyze whether the hardware tiers are being used appropriately and whether the volumes are providing the expected performance. Based on these results, you can optimize data placement by migrating data and setting up an HDT tiering policy (which specifies the hardware tiers in which volumes are to be placed). After completing these operations, check their effect from the Mobility tab and then perform any other necessary data optimization operations. By repeating this process, the placement of data can be optimized. The following figure shows the process of optimizing data placement.

From the Mobility tab, data placement can be optimized from either the application (logical group) perspective or from the DP pool perspective. To respond to requests from host or application administrators, or to confirm whether HDT pools and storage resources are being used according to the needs of each application, check the balance between the performance and the configuration ratio of logical groups. To regularly monitor storage resources, or if there is a problem in the analysis of logical groups, check the balance between the performance and the configuration ratio of each DP pool. If there is a problem, you must check the operating status of each volume in the DP pool and then optimize the configuration.
When periodically monitoring logical groups or DP pools during routine work, check the ranking reports in the Mobility tab so you can efficiently find logical groups or DP pools that have problems in their operational status.

The Mobility tab can be used to check the total capacity and usage rate for each logical group, DP pool, or each volume in a logical group or DP pool. As with HDT pools, you can also check which volumes are using the largest proportions of each hardware tier. In addition, the following performance information can also be viewed:

- Quantity of I/O operations compared to the calculated maximum number of I/O operations

In addition, if linked with Hitachi Tuning Manager, the following performance information can also be viewed:

- Throughput (IOPS) for DP pools, volumes, and hardware tiers
- Past volume performance data (to look for trends)
- Response time of the volume
- Busy rate for parity groups

For details on linking to Hitachi Tuning Manager, see the *Hitachi Command Suite Administrator Guide*.

Note: If Hitachi Tuning Manager is not linked, or information cannot be obtained due to storage system type, or the Tuning Manager - Agent for RAID software version, hyphens are displayed in performance information columns.

From the Mobility tab, the following operations can be performed to optimize data placement:

- Configuring and editing of an HDT tiering policy
- Migrating volumes
- Manually starting or stopping the monitoring and relocation of HDT pools
- Editing tier relocation of HDT volumes
- Expanding, shrinking, or changing settings for DP pools
- Expanding DP volumes and reclaiming zero pages
- Referencing trend charts, which indicate capacity data and performance data for DP pools, and exporting data to CSV files

By creating tiers of volumes or DP pools based on use or performance, you can migrate data to volumes or DP pools that match the relevant conditions simply by specifying a tier as the migration target.

Related tasks

- [Optimizing data placement in a logical group](#) on page 328
- [Optimizing data placement in a DP pool](#) on page 329
Reports for logical groups displayed in the Mobility tab

Several reports are available on a logical group basis for monitoring performance related items such as response time and unused capacity.

You can display one of the following ranking reports for a logical group in the Mobility tab by selecting a top folder of the Public or Private folder, and a top-level folder for each user group under the Private Logical Group folder:

- **Bottom 10: Logical Groups with High Response Time**
 Checks for logical groups including volumes whose response time is slow. Used to determine logical groups which do not satisfy required performances. This ranking is displayed only when you have the license for Hitachi Tuning Manager.

- **Top 10: Logical Groups with Lowest Unused Capacity**
 Checks for logical groups that have little unused capacity left for the allocated DP volumes. Used to determine logical groups which do not have enough capacity.

- **Top 10: Logical Group Used Capacity by Drive Types**
 Checks for logical groups that use a large amount of capacity by drive type. Used to determine whether an unexpected volume is occupying a high-speed drive or logical groups which have invalid data arrangements.

The following summary information is displayed when each logical group is selected:

- **Summary**
 Provides summarized information in a list, such as the number of volumes and the total capacity of a logical group, or the last update date. Based on this information, you can review the usage status of the storage resources in the logical group.

- **Drive Type Summary**
 Checks whether the logical group has the necessary capacity. Checks the total capacity of the volumes and the used capacity of each drive type within the logical group.

- **Drive Type Distribution**
 Checks how many of each drive type is used for each DP pool that is included in a logical group. Used to check whether the configuration of the hardware tier is appropriate.

Related concepts

- [About data mobility](#) on page 324

Reports for DP pools displayed in the Mobility tab

The Mobility tab displays several types of reports for DP pools related to performance and capacity utilization.

Ranking reports for DP groups displayed in the Mobility tab are as follows:

- **Top 10: Pools with the Highest Used %**
Check on a regular basis for DP pools with a high capacity usage rate to determine DP pools that need pool expansion or data migration.

- **Top 10: Pools with the Highest Subscription**
 Check on a regular basis for DP pools with a high reservation rate to determine DP pools that need pool expansion or data migration on a regular basis.

- **Top 10: Tiers with the Highest Performance Utilization**
 Check on a regular basis for hardware tier configurations with high ratio of actual I/O operations to the calculated maximum number of I/O operations. Used to determine HDT pools that include hardware tier configurations with saturated performance.

The information displayed when each DP pool is selected is as follows:

- **Summary**
 Summarizes information in a list, such as the total capacity and usage of DP pools, and the reservation rate. Based on this information, you can review the usage status of the DP pool.
 In addition, you can determine whether you need to add capacity to the DP pool by selecting Show Trend Chart from the Actions menu, and then checking each pool’s trends in the increase of IOPS and in capacity usage. You can change the display period of the trend chart as needed, or save the trend chart as a report after exporting it to a CSV file.

If an HDT pool is selected, the following information can also be viewed:

- **Tier Summary**
 Check information such as drive type, drive rotational speed, and capacity usage rate for each hardware tier. Based on this information, you can review the usage status of hardware tiers. Note that this summary only appears for HDT pools.

- **Capacity & Performance Utilization**
 Check the total capacity and used capacity of the HDT pools for each hardware tier. This lets you confirm whether the HDT pool has the necessary capacity and identifies which hardware tier needs more capacity added to it. This summary only appears for HDT pools. For example, if capacity is increasing, but IOPS shows little change, then adding more capacity for future use is suggested with this capacity added to Tier 2 or Tier 3. If capacity shows little change, but IOPS is increasing, then adding more capacity for future use is suggested with this capacity added to the upper tiers (Tier 1 and Tier 2), or reducing Tier 3 by the amount needed.
 If both capacity and IOPS are increasing, then adding more capacity for future use is necessary. You can determine to which tiers this capacity is added based on the trend graph and distribution chart for each tier.

- **Show Trend Chart**
 Check the trend chart, which combines and displays the capacity usage and performance information for each hardware tier. Based on this information, you can determine whether the hardware tier configuration in the HDT pool is appropriate, and which hardware tiers need additional capacity.
capacity. You can change the display period of the trend chart as needed, or save the trend chart as a report after exporting it to a CSV file. If the display period of the trend chart is seven days or more, the chart displays the average of the obtained information for each day.

- **Capacity Utilization**
 Check the total capacity and used capacity of the HDT pools for each hardware tier. Based on this information, you can check whether the HDT pool has the necessary capacity. You need to perform capacity planning for pools in which the remaining capacity is small. Look at the trends for how pool contents increase, and estimate when you must increase capacity, and possibly add additional media.

- **Performance Utilization**
 Check the ratio of actual I/O operations to the calculated maximum number of I/O operations for each hardware tier. Based on this information, you can determine the hardware tiers whose performance is in a saturated state that then require an optimization operation (such as editing the tiering policy or data migration).

- **Top 10: Volumes Sharing Tier Capacity**
 Check the usage ranking of volumes that have the largest use capacity in each hardware tier. Based on this information, you can check whether data placement is appropriate, for example by checking whether an unexpected volume is occupying a high-speed drive. This summary only appears for HDT pools.

- **View Tier Properties**
 Check the page access distribution per average number of I/O operations, which is based on the monitoring information of HDT pools. Based on this information, you can check whether the hardware tier configuration or tiering policy settings are appropriate. From the page access distribution for HDT pools, you can narrow the range of displayed items to only tiering policies or only HDT volumes, as required.

Related concepts

- [About data mobility](#) on page 324

Optimizing data placement in a logical group

Data placement can be optimized in either of the supported logical group types (Public Logical Groups or Private Logical Groups).

Prerequisites

- A registered Tiered Storage Manager license.
- A registered Hitachi Tuning Manager license (when referencing performance information).
Procedure

1. From the tree view of the Mobility tab, select Logical Groups.
2. From Logical Groups, select either Public Logical Groups or Private Logical Groups, and in the logical group ranking, check for logical groups that are responding late, have a small unused capacity, or have a large used capacity for each drive type (for example: FMD, SSD, SAS, or SATA).
3. If the capacity or performance of the entire logical group is not satisfactory, click the link of the logical group name to check the total capacity of the volumes and the used capacity of each drive type (for example: FMD, SSD, SAS, or SATA) within the logical group. If the Hitachi Tuning Manager license is registered, click the Analyze Performance button to check performance information as required.
4. If the balance between the logical group performance and configuration ratio is not satisfactory, select the row of the target volume, and click Migrate Data, Edit Tiering Policy, or one of the other buttons to remedy the problem.
5. Select Logical Groups from the Mobility tab to check optimization of the data placement.

Related concepts

- [About data mobility](#) on page 324

Related tasks

- [Optimizing data placement in a DP pool](#) on page 329

Optimizing data placement in a DP pool

Data placement can be optimized in a DP pool.

Prerequisites

- A Tiered Storage Manager license must be registered.
- A Hitachi Tuning Manager license must be registered (when referencing performance information).
- Ensure that HDT pools are being monitored (when referencing Performance Utilization, IOPS for a hardware tier, or View Tier Properties).

Procedure

1. From the tree view of the Mobility tab, select DP Pools.
2. Select DP Pool to check for DP pools whose usage rate, reservation rate, or performance usage rate is high.
3. If a DP pool does not meet the expectations for capacity or performance, click the link of the DP pool in the ranking.
4. Check the usage status and performance of each hardware tier in the DP pools by performing the following:
• To check if the usage capacity of the HDP pool is appropriate, from the **Actions** menu, select **Show Trend Chart**, and then check the IOPS and usage capacity of each pool.

• To check if the configuration and performance of each hardware tier in the HDT pool is appropriate, from the **Actions** menu (or from the **Capacity & Performance Utilization** link), select **Show Trend Chart**, and then check the capacity and performance of each hardware tier. To save the contents of the Trend Chart as a report, click **Export to CSV** and save the contents as a CSV file to a location of your choice.

• To check page access distribution per average number of I/O operations, from the **Actions** menu, select **View Tier Properties**.

5. Select the DP volumes that have a problem and optimize the data placement by clicking:
 - **Migrate Data**
 - **Edit Tiering Policy**
 - **Expand DP Volume**, or one of the other buttons

6. On the **Mobility** tab, select **DP Pools** to confirm data placement optimization.

Related concepts

- [About data mobility](#) on page 324

Related tasks

- [Optimizing data placement in a logical group](#) on page 328

Data migration

This module describes data migration.

About data migration

Data migration involves moving data from a set of source volumes to a set of destination volumes or DP pools, including those in externally-connected storage systems.

For example, you can migrate data when your volume performance decreases or your environment changes. When relocating data based on the results of performance monitoring for volumes being used by servers and applications, or when migrating data from an old storage system to a newly set-up storage system, the data in multiple volumes can be migrated to other volumes or DP pools.

The source volume can be selected by host, file server or by logical group. The source volume also can be selected from some of the volumes allocated to a host, file server, some of the volumes displayed in the list of volumes in the file server, some of the volumes in a logical group, some of the volumes...
in a tier. Migration source volumes can also be selected from volume search results. If a volume that cannot be migrated is included in the selected volumes, that volume is excluded from migration and only volumes that can be migrated, will be migrated.

Migration targets are selected from tiers, DP pools, or resource search results. If DP pools are selected, DP volumes with the same capacity as the migration-source volumes are automatically created. The existing DP volumes also can be specified as migration targets.

Note the following:
• When the migration source and the migration target are selected, individual pairs of migration source volumes and migration target volumes (or DP pools) are automatically created. Although, you can change these pairs, pairs of volumes that cannot be migrated will not be created.
• During migration, data can still be accessed.
• When data migration is completed normally, the LDEV ID and host I/O of the migration source volumes are changed to those of the migration target volumes. The procedure for accessing migrated data is not changed before or after migration.
• If linked with Hitachi Tuning Manager, parity group busy rate for the migration source volume and migration target volume can be checked.
• When you create a migration task, you can select whether to delete the migration source volume after the migration completes. As an alternative, after migrating, you can delete the data of the source volumes.
• After volumes are migrated to DP volumes, unused capacity in the target volumes is returned to the pool (zero page reclaim) if the zero page reclaim option is on. We recommend that the migration source volume be deleted if it is a DP volume and you will not use it. If you do not delete the migration source volume, we recommend that the zero page of the migration source volume be discarded after the migration task finishes.
• You cannot work with volumes (such as copy pair or volume allocation) until the migration tasks are completed.

You must have a Tiered Storage Manager license registered to perform Data Migration.

Related tasks
• Migrating data for volume performance on page 338
• Migrating data to a different storage system on page 339

Related references
• Notes on performing data migration on page 332
• Conditions for data migration on page 332
Notes on performing data migration

The number of volumes that are candidates for migration target volumes are narrowed down and displayed when selecting a migration target volume. If you want to display all the volumes, in the migration.properties file on the Device Manager server set a value for the migration.plan.candidateVolumeCountLimit property.

For details on the properties file, refer to the Hitachi Command Suite Administrator Guide. To avoid insufficient memory, we recommend that you use the default.

The maximum number of volumes that can be displayed as migration target candidates is 2,000 volumes. Exceeding this value will produce an error.

The maximum number of volumes that can be displayed as migration source candidates is 500 volumes. Exceeding this value will produce an error.

Data migration tasks take a long time from start of execution to completion. This might affect the performance of access from hosts to target volumes. To avoid executing such tasks while the access frequency is high, check the time required to complete the tasks and set a task execution schedule before registering the tasks. Actual required time might differ considerably in cases such as performing migration for the first time, migrating a volume smaller than 170 GB, or migrating many volumes at the same time.

When storage systems or hosts are under a heavy load, migration might fail. In this case, reduce the load on the storage systems, and then perform data migration again.

If data migration fails, the integrity of data on the migration target cannot be ensured. Therefore, data migration must be restarted.

If a data migration fails, and operations for the migration target such as re-execution of data migration and volume allocation cannot be performed, the storage system must be refreshed.

Related concepts
- About data migration on page 330

Related tasks
- Migrating data for volume performance on page 338
- Migrating data to a different storage system on page 339

Conditions for data migration

Data migration conditions include conditions that apply to all volumes (volume migration requirements), and conditions that depend on the type of volume (volume migration requirements related to volume type).
For some volumes, when you try to select those volumes as migration-source volumes, the reasons why they cannot be selected as migration-source volumes are displayed on-screen.

Volume migration requirements

All volumes for which data migration is to be performed must meet the following conditions:

- Migration-source and migration-target volumes exist within one of the following storage systems (chassis):
 - Virtual Storage Platform
 - Universal Storage Platform V/VM
 - Virtual Storage Platform G1000
 - Universal Storage Platform
 - HUS VM

- The emulation type, number of blocks, and size are the same for the source and target migration volumes. However, note the following exceptions:
 - If the micro version of Universal Storage Platform V/VM is 60-03-20-00/00-xx or later and if both the migration source and the migration target volumes are DP volumes, the emulation type can be between OPEN-V and OPEN-0V.
 - If a volume whose emulation type is OPEN-V is a normal volume, and if the size of a migration target volume is larger than a migration source volume, a volume that has the same size of the migration source volume is re-created. The remaining capacity can be reused. If you set a value for the property `migration.plan.candidateCapacityGroupDisplayMaxCount` in the `migration.properties` file, you can specify how many volumes with a larger capacity than the migration source volume to display, in addition to the volumes with the same capacity as the migration source volume.

- The LDKC:CU:LDEV number for the volume is in the range from 00:00:00 to 00:FF:FF

- Volumes can be accessed, and are not reserved by other programs, Device Manager, or tasks.

- If the emulation type is not OPEN-V, and both the migration source and the migration target volumes are normal, or both are CVS volumes.

Volume migration requirements related to volume type

Whether you can select a volume as a migration source or migration target depends on the volume type. The following table shows which volume types can and cannot be selected as migration sources and targets.
<table>
<thead>
<tr>
<th>Volume Type, State</th>
<th>Source</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal volumes</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>External volumes</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>LUSE volumes</td>
<td>Y(^1)</td>
<td>Y</td>
</tr>
<tr>
<td>DP volumes(^2)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>DP pool volumes</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes for which Cache Residency Manager is set</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Command Device</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes that are configured as a Cross-system Copy pair</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>NAS system volumes</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>System Disk</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes that are configured for concurrent copying</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>On-demand device volumes</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Intermediate volumes</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mainframe volumes for which a path is set</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Mainframe volumes for which SYSPLEXID is set</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Mainframe volumes for which DEVN is set</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Mainframe volumes for which VOLSER is set</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Quorum disks used for High Availability Manager</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>High Availability Manager</td>
<td>P-VOL</td>
<td>N</td>
</tr>
<tr>
<td>ShadowImage, ShadowImage for Mainframe</td>
<td>S-VOL</td>
<td>N</td>
</tr>
<tr>
<td>Volumes for which pairs are configured with a P-VOL and three S-VOLs</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes for which pairs are configured with an S-VOL and an SP-VOL</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes for which pairs are configured with an SP-VOL and two S-VOLs</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes other than the above</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>TrueCopy Synchronous, TrueCopy for Mainframe</td>
<td>P-VOL</td>
<td>Y(^4)</td>
</tr>
<tr>
<td>TrueCopy Synchronous, TrueCopy for Mainframe</td>
<td>S-VOL</td>
<td>(In the case of an internal storage system)</td>
</tr>
<tr>
<td>PSUS</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PSUE</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[Suspended]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PAIR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[Duplex]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(PAIR and Duplex can be a migration source when using TrueCopy Sync with)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volume Type, State</td>
<td>Source</td>
<td>Target</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Universal Storage Platform V/VM, Virtual Storage Platform, Virtual Storage Platform G1000, or HUS VM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes other than the above</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Universal Replicator, Hitachi Universal Replicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-VOL</td>
<td>COPY</td>
<td>N</td>
</tr>
<tr>
<td>S-VOL</td>
<td>PAIR</td>
<td></td>
</tr>
<tr>
<td>[Pending duplex]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Duplex]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes other than the above</td>
<td>Y⁴</td>
<td>N</td>
</tr>
<tr>
<td>JNL-VOL</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Copy-on-Write Snapshot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-VOL</td>
<td>PAIR (1 to 63 generations)</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Volumes other than the above</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Thin Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-VOL</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>V-VOL</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>POOL</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Data Retention Utility⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read/Write</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Volumes other than the above</td>
<td>Y</td>
</tr>
<tr>
<td>Volumes that are configured for XRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspended status</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Volumes other than the above</td>
<td>N</td>
</tr>
<tr>
<td>Volumes for which virtual IDs are specified</td>
<td>Y</td>
<td>Y⁶</td>
</tr>
<tr>
<td>Volumes that are a global-active device pair.</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes reserved as global-active device secondary volumes.</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Volumes that are quorum disks in a global-active device environment.</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Legend:
- Y: Can be selected
- N: Cannot be selected
- []: Names indicated are those for mainframe-based programs

Notes:
1. When the migration source volume is a LUSE, a migration target must be selected for each volume that constitutes the LUSE. Migration target volumes must also satisfy the following conditions:
 - All of the migration target volumes are internal volumes, or all are external volumes.
 - The I/O suppression mode, cache mode, and CLPR of all migration target volumes are the same.
 - Migration target volumes are not DP volumes.

Also, for HCS to automatically create pairs for migration sources and migration targets, we recommend that the following conditions also be met:
- If the migration target volumes are external volumes, all of the volumes are in the same external storage system.
The RAID level, drive type, and SLPR (storage management logical partition) of all migration target volumes are the same.

Note that if you are migrating a LUSE volume of a Universal Storage Platform V/VM storage system for which the micro version is earlier than 60-05-12-00/00, you must not perform I/O operations on the volumes while migration is being executed.

2. The migration-source volumes and migration target volumes or pools are in different DP pools.

3. The following conditions must be satisfied:
 - The status is not blocked.
 - The DP pool has more unused capacity than the migration-source volumes.
 - Used DP pool capacity does not exceed both used thresholds 1 and 2 (even after a migration is performed).
 - DP pool subscription does not exceed the subscription warning and subscription limit (even after a migration is performed).
 - When selecting migration-target resources, if the option to create new DP volumes is selected, the number of virtual volumes in the DP pool is less than the limit (VSP G1000: 63,232; Virtual Storage Platform: 63,232; Universal Storage Platform V/VM: 8,192; HUS VM: 14,080).

4. The CLPRs for the migration target and migration source are the same.

5. If an external storage system is locked (not Read/Write), it cannot be a migration source or migration target.

6. Volumes with virtual IDs specified cannot be selected as migration target volumes when:
 - The migration target is a DP pool, and Create new HDP volumes is selected in the migration target creation options.
 - The specified capacity differs from the capacity of the migration source.

Reasons why volumes cannot be selected as migration sources

If a volume cannot be made a migration source and the reason for it is displayed, in the Data Migration wizard, a character string is displayed in the Migration Restriction column for Selected Column on the Migration Source page. The following table shows the character strings and corresponding reasons why a volume cannot be made a migration source.

Table 8-2 Volumes that cannot be used as migration sources

<table>
<thead>
<tr>
<th>Displayed character string</th>
<th>Reason preventing use as a migration source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Type</td>
<td>The volume is part of an unsupported storage system.</td>
</tr>
<tr>
<td>Cache Residency Manager</td>
<td>Cache Residency Manager or Hitachi Cache Residency Manager for Mainframe is set for the volume.</td>
</tr>
<tr>
<td>Command Device</td>
<td>The volume is used as a command device.</td>
</tr>
<tr>
<td>Copy-On-Write Snapshot Status</td>
<td>The volume is one of the following:</td>
</tr>
<tr>
<td></td>
<td>- The volume is the P-VOL of a Copy-on-Write Snapshot pair, its status is PAIR, and the number of generations is 64</td>
</tr>
<tr>
<td>Displayed character string</td>
<td>Reason preventing use as a migration source</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dynamic Provisioning [Pool Volume]</td>
<td>The volume is a DP pool volume.</td>
</tr>
<tr>
<td>Dynamic Provisioning [Unassigned]</td>
<td>The volume is a virtual volume and is not associated with a DP pool.</td>
</tr>
<tr>
<td>Externally Locked</td>
<td>The volume is locked by Data Retention Utility (not Read/Write).</td>
</tr>
<tr>
<td>Intermediate volume</td>
<td>The volume is an intermediate volume.</td>
</tr>
<tr>
<td>Migration Reserved</td>
<td>The volume has already been reserved as a migration target.</td>
</tr>
<tr>
<td>Not Acquired Volume Information</td>
<td>Information for the volume cannot be acquired.</td>
</tr>
<tr>
<td>On Demand Device</td>
<td>The volume is an on-demand device volume.</td>
</tr>
<tr>
<td>Reserved</td>
<td>The volume has already been reserved in Device Manager.</td>
</tr>
<tr>
<td>Role</td>
<td>Only the View role is assigned.</td>
</tr>
<tr>
<td>ShadowImage Configuration [Leaf]</td>
<td>The volume is part of a ShadowImage or ShadowImage for Mainframe S-VOL, and paired with an SP-VOL.</td>
</tr>
<tr>
<td>ShadowImage Configuration [Node]</td>
<td>The volume is part of a ShadowImage or ShadowImage for Mainframe SP-VOL, and paired with two S-VOLs.</td>
</tr>
<tr>
<td>ShadowImage Configuration [Root]</td>
<td>The volume is part of a ShadowImage or ShadowImage for Mainframe P-VOL, and paired with three S-VOLs.</td>
</tr>
<tr>
<td>System Disk</td>
<td>The volume is a system disk.</td>
</tr>
<tr>
<td>Thin Image</td>
<td>This is a Thin Image P-VOL, V-VOL, or Pool.</td>
</tr>
</tbody>
</table>
| TrueCopy Asynchronous Status | The volume is one of the following:
 - The volume is part of a TrueCopy Asynchronous pair, and the status is neither PSUS nor PSUE
 - The volume is part of a TrueCopy for Mainframe pair, and the status is not suspended |
| TrueCopy Synchronous Status | The volume is one of the following:
 - The volume is part of a TrueCopy Synchronous pair, and the status is other than PSUS, PSUE, or PAIR
 - The volume is part of a TrueCopy for Mainframe pair, and the status is not suspended
 - The volume is in a Hitachi USP, and a part of a TrueCopy Synchronous pair, and the status is PAIR
 - The volume is from a Hitachi USP, and part of a TrueCopy for Mainframe pair, and the status is Duplex |
<p>| Universal Replicator Status | The volume is one of the following: |</p>
<table>
<thead>
<tr>
<th>Displayed character string</th>
<th>Reason preventing use as a migration source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Migration V2</td>
<td>Volume Migration V2 is not installed in the storage system.</td>
</tr>
<tr>
<td>global-active device</td>
<td>Volumes that are a global-active device pair.</td>
</tr>
<tr>
<td>GAD Reserved</td>
<td>Volumes reserved as global-active device secondary volumes.</td>
</tr>
</tbody>
</table>

Related concepts
- [About data migration](#) on page 330

Related tasks
- [Migrating data for volume performance](#) on page 338
- [Migrating data to a different storage system](#) on page 339

Migrating data for volume performance
You can migrate data based on the results of monitoring volume performance.

Prerequisites
- Register a Tiered Storage Manager license.
- Set up an external connection to a Virtual Storage Platform, Universal Storage Platform V/VM, Universal Storage Platform, Virtual Storage Platform G1000, or HUS VM storage system.
- Create a tier in which the target mainframe volumes are grouped (only when migrating mainframe volumes).
- Gather the following information:
 - Migration source host, file server, logical group, tier, or storage system.
 - Migration target DP pools, tier or migration target volumes.

Procedure
1. In the **Resources** or **Mobility** tab, select a migration source host or logical group. From a list of hosts or logical groups, you may also select migration source volumes. If migrating data from a mainframe volume, expand the **Tiers** tree on the **Resources** tab or the **Mobility** tab, and then select the corresponding tier.
2. Click the **Migrate Data** button.
3. Verify that the correct migration source volumes are selected, and then click **Next**.

4. Specify the migration target, DP pool or tier and then click **Next**. When the parity group selection rule is set, a candidate volume that is appropriate as a migration target is selected depending on the application that is being used or the usage rate of the parity group. Specifically, the system attempts one of the following:
 - **Balance Capacity**: Selects a migration target candidate so that the remaining capacity of the targeted parity group is equalized with other parity groups.
 - **Maximum Coverage**: Selects a candidate for the migration target from as many parity groups as possible.
 - **Minimum Coverage**: Selects a candidate for the migration target from as few parity groups as possible.

5. Confirm that all migration source volumes and target volumes or DP pools are paired properly, confirm that no other problems exist, and then click **Next**. If necessary, change the pairs. To change a pair, first select the volume pair, then from the **Other Candidates for Migration** list, select the target volume to change to, and then click **Map Volume**.

6. Specify plan options as necessary, and then run the task.

7. In the tasks list, confirm the result of the task. After a task is created, you must not perform any operations on volumes included in the task by using Hitachi Command Suite or other programs until the task has finished executing.

Related concepts

- [About data migration](#) on page 330

Related tasks

- [Migrating data to a different storage system](#) on page 339

Related references

- [Conditions for data migration](#) on page 332

Migrating data to a different storage system

You can migrate data to a different storage system.

Prerequisites

- Register a Tiered Storage Manager license
- Set up an external connection to a Virtual Storage Platform, Universal Storage Platform V/VM, Universal Storage Platform, Virtual Storage Platform G1000, or HUS VM storage system.
- Create a tier in which the target mainframe volumes are grouped (only when migrating mainframe volumes).
• Identify the migration source host, file server, logical group, tier, or storage system.
• Identify the migration target DP pools, tier, or migration target volumes.

Procedure

2. Expand the tree for the source storage system that is to be migrated, select the volumes to be migrated from the list of external storage systems, and then click the Migrate Data button.
3. Confirm that the correct migration source volumes are selected, and then click the Next button.
4. Specify the migration target, DP pools, or tier and then click the Next button. When the parity group selection rule is set, a candidate volume that is appropriate as a migration target will be selected depending on the application that is being used or the usage rate of the parity group. Specifically:
 • **Balance Capacity**: System attempts to select a migration target candidate so that the remaining capacity of the targeted parity group is equalized with other parity groups.
 • **Maximum Coverage**: Select a candidate for the migration target from as many parity groups as possible.
 • **Minimum Coverage**: Select a candidate for the migration target from as few parity groups as possible.
5. Confirm that all migration source volumes and target volumes or DP pools are paired properly, confirm that no other problems exist, and then click the Next button. If necessary, change the pairs. To change a pair, first select the volume pair, then from the Other Candidates for Migration Target list, select the target volume to change to, and then click the Map Volume button.
6. Specify plan options as necessary and then execute the task.
7. In the tasks list, confirm the execution result of the task. After a task is created, you must not perform operations on volumes included in the task by using Hitachi Command Suite or other programs until the task has finished executing.

Related concepts
• [About data migration](#) on page 330

Related tasks
• [Migrating data for volume performance](#) on page 338

Related references
• [Conditions for data migration](#) on page 332
Migrate data dialog box

Data migration provides the capability for moving data from a set of source volumes to a set of destination volumes or DP pools, including those in externally-connected storage systems.

The Migrate data dialog box is a wizard that guides you in configuring the task for migrating selected data from a source location to a destination target.

For example, when you select a specific host, storage system, pool type, and click Apply, the corresponding volume information is displayed in the list of selected volumes because this information is already known and is non-configurable. To create a data migration task, you must complete a four-step configuration process using the migrate data wizard.

When you enter the minimum required information in a dialog box, review the Plan Summary, and click Submit to complete the configuration of this migration task. Click the Back button to modify the plan to meet your requirements.

The following table describes the dialog box fields, subfields, and field groups. A field group is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double arrow symbol (>>).

As you enter information in a dialog box, if the information is incorrect, errors that include a description of the problem appear at the top of the box.

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Migration Source</td>
<td></td>
<td>Step 1 - Specify the criteria to select the source volumes.</td>
</tr>
<tr>
<td>Logical group</td>
<td>-</td>
<td>Click Select to display the Select Logical Group dialog box from which you can select from the available types. After selecting, click OK to continue.</td>
</tr>
<tr>
<td>Host</td>
<td>-</td>
<td>The Host drop-down list displays available hosts from which you can select.</td>
</tr>
<tr>
<td>Storage system</td>
<td>-</td>
<td>The Storage system drop-down list displays available storage systems from which you can select.</td>
</tr>
<tr>
<td>Note: If the selected storage system supports or has corresponding pools, the Pools drop-down list is active.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool</td>
<td>-</td>
<td>The Pool drop-down list displays the available pools from which you can select.</td>
</tr>
<tr>
<td>>> Advanced Options</td>
<td>(See the following fields for details)</td>
<td>Click >> Advanced Options to display the Volume criteria options.</td>
</tr>
</tbody>
</table>
2. Migration Target

Specify a pool, tier, or volume criteria for the migration targets.

<table>
<thead>
<tr>
<th>Storage system</th>
<th>Identifies the selected storage system that is the migration source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migration-Target Selection</td>
<td>Depending upon the selected storage system, choose one of the following available migration target options:</td>
</tr>
<tr>
<td>Pool</td>
<td>Click Pool and select the pool migration target from the drop-down list.</td>
</tr>
</tbody>
</table>

Migration-Target Creation Options

<table>
<thead>
<tr>
<th>Create new DP volumes</th>
<th>Choose one of the following Migration-Target Creation Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Volume criteria and Parity group selection rule are disabled when you select Pool and Create new DP volumes as your Migration Target Selection choices.</td>
<td></td>
</tr>
<tr>
<td>If you selected Pool and this option, click Next to continue on to Step 3 in this process.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use existing DP volumes</th>
<th>Note: Volume criteria is enabled and Parity group selection rule is disabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you select Pool, click Next and continue on to Step 3 in this process.</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Subfield</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>>> Advanced Options</td>
<td>Migration-Target Selection: Pool</td>
</tr>
<tr>
<td>Volume Criteria</td>
<td>-</td>
</tr>
</tbody>
</table>
| Migration-Target Selection | - | Depending upon the selected storage system, choose one of the following available migration target options:
 - Pool
 - Tier
 - Volume Criteria

Tier | Click Tier and select the tier from the drop-down list to be the tier migration target. |
| >> Advanced Options | Migration-Target Selection: Tier | Click >> Advanced Options to display the Volume criteria options.
Note: The Volume criteria drop-down list choices you make affect each subsequent criteria option for the tier migration target. For details on setting these options, see >> Advanced Options in **Step 1** in this table.

Parity group selection rule | Click Parity group selection rule, and select one of the following parity group selection rule options:
 - Balance Capacity (use the least utilized parity groups first)
 - Maximum Coverage (use the maximum number of parity groups)
 - Minimum Coverage (use the minimum number of parity groups)

Click Next to conclude selecting the tier migration target, and continue on to **Step 3** in this process. |
| Migration-Target Selection | - | Depending upon the selected storage system, choose one of the following available migration target options:
 - Pool
 - Tier
 - Volume Criteria

Volume criteria | Click Volume criteria and click >> Advanced Options to specify the volume criteria settings for the volume migration target. |
| >> Advanced Options | Migration-Target Selection: Volume criteria | Click >> Advanced Options to display the Volume criteria options.
Note: The Volume criteria drop-down list choices you make affect each subsequent criteria option for the migration volume target. For details on setting these options, see >> Advanced Options in **Step 1** in this table.

Parity group selection rule | Click Parity group selection rule, and select one of the following parity group selection rule options:
 - Balance Capacity (use the least utilized parity groups first)
 - Maximum Coverage (use the maximum number of parity groups)
 - Minimum Coverage (use the minimum number of parity groups)

Click Next to conclude selecting the migration target, and continue on to **Step 3** in this process. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Migration Pair</td>
<td></td>
<td>Edit migration pairs.</td>
</tr>
<tr>
<td>Analyze Performance</td>
<td>-</td>
<td>Click Analyze Performance to display a report of historic performance for one or more selected migration pairs (this requires a Hitachi Tuning Manager license).</td>
</tr>
<tr>
<td>Do Not Migrate</td>
<td>-</td>
<td>Click Do Not Migrate to remove one or more selected migration pairs from migration consideration.</td>
</tr>
<tr>
<td>Restore Default Pairs</td>
<td>-</td>
<td>Click Restore Default Pairs to restore one or more selected migration pairs to default values.</td>
</tr>
<tr>
<td>Other Candidate pools for Migration</td>
<td>-</td>
<td>From the other candidate pools for migration list, click Map Pools to select other pools to map into the migration process. Click Next to conclude editing the migration pairs, and continue on to Step 4 in this process. Note: If you selected any option besides Pool in Step 2 of this wizard, you would click Map Volumes to select other volumes to map into the migration process, and this list table would be titled Other Candidate volumes for Migration.</td>
</tr>
</tbody>
</table>

4. Show Plan and Option Setting

Verify the plan for migrating data. You can also specify migration options

| Plan Summary | - | In the plan summary list, review the following migration option settings:
- Storage System - listed system name and/or IP address
- Migration Source - listed host name, logical group name and location, and pool name
- Migration Target - listed pool or volume name
- Estimated Time - listed time to complete migration in hh:mm:ss format
If you disagree with the migration option settings, click Back and make the necessary changes. |
| >> Plan Details | - | Click >> Plan Details to display the migration pairs list. Review the listed migration pairs. If you disagree with the listed migration pairs, click Back and make the necessary changes. |
| >> Migration Options | - | Click >> Migration Options to display the following migration options:
- Shredding
- Deleting
- Zero page reclaim
- Email address that received completion emails
After choosing your option, enter a task name and description in the appropriate Task name and Description text boxes. |
| Shredding | | Click the Shredding option to enable the destruction (shredding) of deleted data from the source volume during the migration operation. |
| Deleting | | Click the Deleting option to enable deletion of the migration source volume after migration. |
Prerequisites for migrating data from an SMI-S enabled storage system to another storage system

You can migrate data between an old and new storage system for abolishing or merging systems by using the external storage connection function (External Storage Management). The following figures provide an example of migrating data to Universal Storage Platform V when the SMI-S enabled storage system is abolished. To perform migration, use the GUI or CLI to migrate data by the system.
Related tasks

- Migrating data from an SMI-S enabled storage system to another storage system on page 346

Migrating data from an SMI-S enabled storage system to another storage system

You can migrate data from an SMI-S enabled storage system to another storage system.
Prerequisites
- Register a Tiered Storage Manager license.
- Set up Tiered Storage Manager CLI (if necessary).
- Set up Device Manager CLI (if necessary)
- Connect the port on the SMI-S enabled storage system to the External port of the storage system by using Fibre Channel or Fibre Channel over Ethernet.
- Assign the volumes on the SMI-S enabled storage system to an External port (performed by the management tool of the SMI-S enabled storage system).
- Gather the following information:
 - Name or IP address of the allocation target host.
 - WWN and LUN associated with the migration source SMI-S enabled storage system that was assigned to the External port.

For details about the specified values specified for parameters and syntax of each CLI command of Device Manager and Tiered Storage Manager to be used in tasks, see the *Hitachi Command Suite CLI Reference Guide* and the *Tiered Storage Manager CLI Reference Guide*.

Procedure

1. Register the migration target storage system and the migration source SMI-S enabled storage system in Hitachi Command Suite. Use the GUI to register the storage systems, or run the `AddStorageArray` command (Device Manager CLI).

 Note: Registering or updating a storage system might take a long time depending on its configuration or scale, so you need to perform these operations systematically.

 Note: If the migration target or source storage system has already been registered, you need to update the migration target or source storage system in order to obtain the latest configuration information.

2. Stop the hosts to which the storage systems are connected. Observe that the following steps (3 - 4) need to be performed while the host is stopped, so you need a plan that considers host operations.

3. Map the volumes of the migration source SMI-S enabled storage system to the migration target storage system as external volumes. Use the GUI to map the volumes or run the `AddExternalArrayGroup` command (Device Manager CLI).

4. Allocate the external volumes mapped to the migration target storage system to the host. Use the GUI to allocate the volumes, or run the `AddLun` command (Device Manager CLI).
5. Start the host, and then change the target that the host (applications) accesses from the migration source storage system to the migration target storage system. Perform this step by using the configuration tools of the host while applications are stopped.

6. Migrate data in the external volumes (migration source) to an internal volume of the migration target storage system (data migration). Use the GUI to migrate data, or run the following commands (Tiered Storage Manager CLI):
 - `CreateStorageTier` command
 - `CreateMigrationGroup` command
 - `CreateMigrationPlan` command
 - `CreateMigrationTask` command
 - `ExecuteTask` command

7. Unmap the external volumes (migration source) from the migration target storage system.
 Use the GUI to unmap (unvirtualize) the volumes or run the `DeleteExternalArrayGroup` command (Device Manager CLI).

8. Delete the migration source SMI-S enabled storage system from the management targets of Hitachi Command Suite.
 Use the GUI to delete a storage system, or run the `DeleteStorageArray` command in the Device Manager CLI.

Result

The data of the migration source SMI-S enabled storage system can now be used as an internal volume of the migration target storage system. The migration source SMI-S enabled storage system can be removed.

Related references

- [Operations available to SMI-S enabled storage systems](#) on page 60
Grouping resources

This module describes how to group logical groups and storage tiers (resources).

- Managing logical groups
- Managing storage tiers
Managing logical groups

This module describes how to manage the two supported logical group types: public and private. Public and private logical groups are listed in the navigation pane (Resources > Logical Groups) under the Public Logical Groups root folder and the Private Logical Groups root folder, respectively.

About logical groups

A logical group is a mechanism for the grouping of storage resources (hosts and volumes) by storage administrators, and can be organized according to business operations, geographic locations, or other organizational divisions.

Using grouped storage resources as logical groups allows you to:

- Create summary reports that indicate current resource use in a storage environment by organization. You can create logical groups that generate usage summary reports for each organization that uses storage, if you manage an entire system.
- Monitor volumes and perform storage system operations by grouping together managed resources (hosts and volumes). You can categorize volumes according to the organizations that use the storage, if you manage a part of a system. Grouping and categorizing volumes makes finding volumes easier and allows you to perform daily operations for volume resources.

You can add multiple hosts or volumes to a logical group at one time by specifying a range of IP addresses, or by specifying multiple items, such as operating system type and drive type. The same hosts or volumes can be registered to multiple logical groups.

When you need to, you can add or remove hosts and volumes from a logical group, or change the hierarchy, or structure, of existing logical group folders, depending on the logical group type. Any volumes allocated to a host in a logical group are automatically assigned to the logical group. Note that child groups cannot be created below host or volume groups (child groups can be created only below folders).

Hitachi Command Suite supports two types of logical groups: public and private. A key distinction between public and private logical groups is the root location in the work area for the user, and these two logical group types have the following basic structure in the navigation pane:

Public logical groups

- Logical group folders that contain groups of hosts and volumes that are grouped by business function, geographic, or other organizational divisions.
- Logical groups of hosts.
- Logical groups of volumes.
Private logical groups

Top-level folder that corresponds to each user group.
- Private logical group folder that contains groups of hosts and volumes that are grouped by business function, geographic, or other organizational divisions.
- Logical groups of hosts.
- Logical groups of volumes.

The following figure illustrates the structure of logical groups.

The following descriptions and figures show key differences between public logical groups and private logical groups.
• In public logical groups, any HCS user can access public logical groups.

• In private logical groups, only users that belong to specific user groups can access the private logical groups that are associated with the user groups to which they belong. The Private Logical Groups root folder can include separate private logical groups thereby maintaining a logical separation between business organizations or tenants, to provide for the secure sharing of resources.
For each of these tenant user groups, only users that belong to the user group can see or access the private logical groups for that user group.

When a user group is created, HCS automatically creates a top-level folder for each user group under the Private Logical Group folder. The default name of the folder is the user group name. All members of the user group can use this top-level folder as their work folder. In this work folder, users can create, edit, or delete private logical groups. You can change the default name for the top-level folder name.

However, if you edit the user group name, the names are not synchronized. When a user group is deleted, the top-level folder under the Private Logical Groups root folder is also deleted. Be aware that all folders under the top-level folder are also deleted when the user group is deleted.

The following table describes in more detail the structure for public and private logical groups and the access rules for each logical group type.
Table 9-1 Logical groups structure

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Logical Group</td>
<td>Root folder for public logical groups</td>
</tr>
<tr>
<td>>public-logical-group</td>
<td>Each public logical group can be a logical group of hosts, a logical group of volumes, or a logical group folder that contains both hosts and volumes. All users can access these public logical groups.</td>
</tr>
<tr>
<td>Private Logical Group</td>
<td>Root folder for private logical groups</td>
</tr>
<tr>
<td>> user-group-name top-level folder</td>
<td>A top-level folder for each user group. This folder is created by HCS under the Private Logical Groups folder and can be used as a work folder for a user group. The default name of this top-level folder is the name of the user group. You cannot add, move, or delete these work folders except by adding or deleting a user group. When you delete a user group, the corresponding top-level folder and all included private logical groups under it are also deleted. Users that belong to the corresponding user group can create, edit, or delete private logical groups inside this folder.</td>
</tr>
<tr>
<td>>> private-logical-group</td>
<td>Each private logical group within a user-group-name folder can be a logical group of hosts, a logical group of volumes, or a logical group folder that contains both hosts and volumes. These logical groups can only be accessed by members of the user group to which this logical group belongs. Users that belong to the user group can create, edit, or delete private logical groups inside the user-group-name folder.</td>
</tr>
</tbody>
</table>

If you have a registered Tiered Storage Manager license, use the Mobility tab to check the volume status for each logical group or to optimize data arrangements. To efficiently find logical groups that have usage problems, use the Mobility tab to check their rankings. For example, such as any logical groups with a small amount of unused capacity or that use a large amount of capacity by drive type (for example: FMD, SSD, SAS, or SATA). The Tiered Storage Manager provides more detailed volume information such as IOPS, response time, and used capacity for each tier in the system in addition to the status information displayed by the Resources tab.

If you do not have a registered Tiered Storage Manager license, use the Resources tab to check the volume status for each logical group. For example, the Resources tab displays the following volume status-related categories displayed in the application pane:

- Volume
- Storage System
- WWN Nickname
- Port
- Port Type
- LUN
- Capacity
Creating logical groups

HCS supports two types of logical groups: Public Logical Groups and Private Logical Groups.

Prerequisites

- Verify that any host to be assigned to a logical group is a normal host, a virtualization server, or a virtual machine registered as a host.

Observe the following restrictions:

- File servers cannot be assigned to a logical group.
- Mainframe volumes (MF-Vols) cannot be assigned to a logical group.
- Child groups cannot be created below host or volume groups. Child groups can be created only below folders.

Procedure

1. On the **Resources** tab, select **Logical Groups**.
2. Create a logical group using one of the following methods:
 - For a Public Logical Group, select the Public Logical Groups root folder and click **Create Logical Group**.
 - For a Private Logical Group, select the Private Logical Groups root folder, select a top-level folder for each user group under the Private Logical Group folder, and then click **Create Logical Group**.
3. In the **Create Logical Group** dialog box, enter information in the **Name** and **Description** fields, and select one of the following **Create as** options: **Folder**, **Group of hosts**, or **Group of volumes**.
 - To create a folder, click the **Folder** option and click **OK**.
 - To create a group of hosts, click the **Group of hosts** option, and choose how to specify hosts for a logical group by selecting one of the following **Specify hosts** options: **By Search Criteria** or **Manually**. If you selected **By Search Criteria**, click **Add Criteria** in the list of criteria. In the **Add Conditions** dialog box, specify values for **IP Address Criteria**, **Name Criteria**, and **Operating System Criteria** as needed. You can also choose to click **Search Result Preview**, select one or more hosts in the list of hosts, and click **Add** to add them to the list of hosts, and then click **OK**.
If you selected **Manually**, click **Add Hosts** and in the **Add Hosts** dialog box, select one or more hosts from the lists of hosts, click **Add** to add them to the list of selected hosts, and then click **OK**.

- To create a group of volumes, click the **Group of volumes** option, and choose how to specify volumes for a logical group by selecting one of the following **Specify volumes** options: **By Search Criteria** or **Manually**.

 If you selected **By Search Criteria**, click **Add Criteria** in the list of criteria. In the **Add Conditions** dialog box, specify values for **Usage Criteria**, **Storage System Criteria**, and **Volume Criteria** as needed. You can also choose to click **Search Result Preview**, select one or more volumes in the list of selected volumes, click **Add**, and then click **OK**.

 If you selected **Manually**, click **Add Volume** and in the **Add Volumes** dialog box, select one or more volumes from the list of available volumes, click **Add** to add them to the list of selected volumes, and then click **OK**.

4. Repeat this process for each new logical group that you want to create.

5. To create a hierarchy of logical groups, repeat step 2.

Result

New logical groups appear on the Resources tab under Logical Groups.

Tip: To delete logical groups, select the logical groups to be deleted, click **Delete Logical Groups**, and click **OK**.

Related concepts
- [About logical groups](#) on page 350

Related tasks
- [Editing logical groups](#) on page 357

Viewing logical group reports

You can view summary reports for specified logical groups.

Procedure

1. On the **Resources** tab, click **Logical Groups**.
2. Expand the tree and select the target logical group.

Related concepts
- [About logical groups](#) on page 350

Related tasks
- [Creating logical groups](#) on page 355
Editing logical groups

You can edit a logical group to change the name and description, move a logical group to another logical group folder, select a new parent logical group, or edit a logical group to add or remove hosts or volumes.

If data placement profiles for HDT volumes are created, a change of logical groups is reflected for the structure of data placement profiles.

Procedure

1. On the Resources tab, click Logical Groups.
2. Select Public Logical Groups or Private Logical Groups.
3. In the list of logical groups on the application pane, click the row for the logical group you want to edit, and click Edit Logical Group.
4. Edit the name or description of the logical group.
5. Click Change Location to move the logical group to another logical group folder, select a new parent logical group, and click OK.
6. Select the logical group for the volumes or hosts that you want to add or remove, and click OK.
7. Click OK to finish editing the logical group.

Result

Changes are reflected in the Logical Groups tree in the navigation pane, and in the details of the logical groups.

Related concepts

- About logical groups on page 350

Related tasks

- Creating logical groups on page 355

Performing operations from a logical group

You can perform tasks on storage systems by starting from a logical group.

Procedure

1. On the Resources tab, select Logical Groups, and select either Public Logical Groups or Private Logical Groups.
2. Expand the appropriate logical groups tree and select the target logical group.
3. Select a host or volume.
4. Click on the task type you want to perform such as Allocate Like Volumes, Edit Labels, Edit LUN Paths, or Export to CSV, or click More Actions for additional choices.
5. If needed, update the task name and provide a description.
6. Click Submit.
7. You can check the progress and result of the selected task on the Tasks & Alerts tab, and verify the results.

Related concepts
• About logical groups on page 350

Related tasks
• Creating logical groups on page 355

Deleting logical groups
You can delete logical groups when they are no longer required.

Procedure
1. On the Resources tab, select Logical Groups.
2. Depending on the type of logical group you want to delete (public or private), do one of the following:
 • Click Public Logical Groups in the navigation pane, and then select a logical group from the list of logical groups in the application pane.
 • Expand Private Logical Groups in the navigation pane, select a logical group folder from the navigation pane, and then select a logical group from the list of logical groups in the application pane.
3. Click Delete Logical Groups.
4. Click OK to confirm and delete the logical group.

Tip: Deleting a user group deletes the private logical group folder and all the logical groups in that folder. You cannot delete a top-level folder for each user group under the Private Logical Group folder.

Result
The logical group you deleted no longer appears in the list of logical groups.

Related tasks
• Deleting user groups on page 129

Managing storage tiers
This module describes how to manage tiers.

About tier-based storage management
In Hitachi Command Suite, you must have a Tiered Storage Manager license to perform tier-based storage management operations.
In a tier-based storage management system, storage system resources are grouped and managed in tiers. Tiers can be created for volumes or for Dynamic Provisioning (DP) pools to allow high-capacity resources to be centrally managed.

Tiers allow you to allocate data according to its purpose. This allocation can be done by grouping drives in a storage system by type, or by creating groupings of particular tasks or functions. For example, you can allocate frequently accessed data to a tier of high-reliability drives or storage systems.

You can also use storage system resources more efficiently by storing data that is only for archive purposes on a tier of SATA drives or older storage systems. A volume can also have a volume belong to multiple tiers.

When you are managing a large variety of resources in tiers, you can check the performance status of all the resources in the tiers at the same time, and you can select the migration-source and migration-target volumes for data migrations from the tiers. By selecting tiers that match all the requirements when volumes will be allocated to hosts, you can allocate all the necessary volumes from the selected tiers at the same time.

Related tasks
- [Creating tiers](#) on page 359
- [Expanding a tier](#) on page 360

Values to ensure acceptable tier performance

The values below ensure the operation of Tiered Storage Manager. Performance might slow down or memory might become insufficient if a value exceeds these values.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value for which performance is ensured</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tiers in a single storage system</td>
<td>100</td>
<td>30 or less</td>
</tr>
<tr>
<td>Number of unused volumes a tier</td>
<td>1,300</td>
<td>1,000 or less</td>
</tr>
</tbody>
</table>

Creating tiers
Create tiers to prioritize data based on accessibility requirements.

Prerequisites
- You must have a valid license for Tiered Storage Manager.
- Register one or more of the following Hitachi storage systems:
 - Virtual Storage Platform G1000
Virtual Storage Platform
○ Universal Storage Platform V/VM
○ USP
○ HUS VM

Procedure
1. On the Resources tab, select Tiers.
2. Select the storage system for which to create a tier.
3. Click Create Tier.
4. Specify the appropriate information.
5. Click OK.

Result
The tier is created and added to the storage system.

Related concepts
• About tier-based storage management on page 358

Related tasks
• Expanding a tier on page 360
• Deleting tiers on page 361

Expanding a tier
Edit a tier to expand it.

Prerequisites
A Tiered Storage Manager license must be registered.

Procedure
1. On the Resources tab, select Tiers.
2. Expand the tree, and select the storage system with the tier you want to expand.
3. From the list of tiers in the application pane, select the tier you want to expand and click Edit Tier.
4. Specify the appropriate values.
5. Click OK.
6. Confirm that the tier has expanded.

Related concepts
• About tier-based storage management on page 358

Related tasks
• Creating tiers on page 359
Deleting tiers

You can delete storage tiers that you no longer need.

Procedure

1. On the Resources tab, select Tiers.
2. Select the tiers to delete.
3. Click Delete Tier.
4. Click Delete.
5. Confirm that the tier is deleted.

Result

The tiers you deleted no longer appear in the list of tiers.
Managing storage system information

This module describes how to manage resource labels and WWN nicknames, how to search managed resources, and how to generate storage system reports.

- Managing resource labels
- Managing WWNs by using nicknames
- Searching HCS resources
- Generating resource reports
- Using reports to verify system changes
Managing resource labels

This module describes how to manage resource labels.

About managing resource labels

User-defined resource labels can be assigned to volumes and DP pools. Specifically, resource labels can be volume labels, or DP pool names.

Resource labels help you:
- Search for volumes or DP pools
- Differentiate between listed volumes or DP pools
- Confirm the correct resource is being acted upon

When searching resource labels, you can:
- Allocate volumes or DP pools
- Edit volume LUN paths

Resource labels are assigned using:
- Device Manager
- Storage Navigator

For storage systems where resource labels have already been configured using Storage Navigator, you can apply (import) the resource labels to Device Manager in a batch operation.

If Device Manager and Storage Navigator are both actively used, and HCS is the primary management software, labels assigned in Device Manager can be applied (exported) to storage systems managed by Storage Navigator. Volume labels can be assigned when creating or allocating volumes depending on their use for hosts or applications. For Virtual Storage Platform G1000, importing and exporting labels is unnecessary because the label information from the storage system and the HCS labels will always match.

Note: Due to differences between Device Manager and storage systems, incompatible character type or string length issues will be reported with pop-up messages. Use the message to resolve resource label naming issues.

Tip: You can apply any current label to the storage system by specifying the following settings:
- For volume labels, select Reflect current labels to the storage systems.
- For DP pool names, select Reflect this pool name to the storage system.

Related tasks
- Editing resource labels on page 365
- Searching resource labels on page 365
- Importing storage system resource labels on page 366
Editing resource labels

You can create or edit resource labels for volumes or DP pool names.

Procedure

1. On the Resources tab, expand Storage Systems to display the list of volumes or DP pools.
2. Select a volume or DP pool.
3. Choose one of the following options:
 - Click Edit Labels to edit a volume label.
 - Click Edit Pool to edit a DP pool name.
4. Specify a new label or DP pool name.
5. (Optional) Update the task name and provide a description.
6. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
7. Click Submit.
 If the task is scheduled to run immediately, the process begins.
8. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result

The revised volume or DP pool name appears in the list of volumes or DP pools.

Related concepts

- About managing resource labels on page 364

Searching resource labels

You can search, filter and sort on resource labels to locate volumes or DP pools and perform actions on them.

Procedure

1. Locate volumes or DP pools by using one of the following methods:
 - Using the search box, enter a volume label or DP pool name, and perform a search. You can use Search Keyword for to specify the resources you want to search, for example Volumes.
 - From the search box, you can also search volume labels by using More Searches, selecting Volume, and selecting the category Label from the Advanced tab.
To filter, from the **Resources** tab expand the tree to display the list of volumes or DP pools, and click **Filter** to specify the volume label or DP pool name.

To sort, from the **Resources** tab expand the tree to display the list of volumes or DP pools, and click **Label** or **Name** column headings to sort by volume label or DP pool name.

2. Select volumes or DP pools from the search, filter, or sort results.
3. Perform the desired task.

Related concepts
- [About managing resource labels](#) on page 364

Importing storage system resource labels

In an environment where storage system resource labels have already been set using Storage Navigator, you can apply (import) the storage system resource labels to Device Manager.

Note: Applying storage system resource labels overwrites all the volume labels and DP pool names in HCS for the selected storage system. For Virtual Storage Platform G1000, refreshing the labels is unnecessary because the label information from the storage system to HCS will always match.

Procedure

1. On the **Resources** tab, from the list of **Storage Systems** in the application pane, select the storage system whose labels you want to apply.
2. Click **Refresh Labels**.
3. Select the resource labels to apply, and submit the task.
4. Check the task results in **Tasks & Alerts**.

Result

Make sure the labels are changed in the volume list, and that pool names are changed in the DP pool list.

Related concepts
- [About managing resource labels](#) on page 364

Managing WWNs by using nicknames

This module describes how to specify, change or delete WWN nicknames.

About managing WWNs by using nicknames

Each host bus adapter (HBA) has a unique World Wide Name (WWN) identifier that consists of a 64-bit physical address. The purpose of specifying
WWN nicknames is to easily identify accessible HBAs that are registered in a host group.

If one HBA WWN belongs to multiple host groups, you can set a nickname in the WWN information that is defined for each host group. WWN nicknames that are specified for a host group can provide information about the I/O path (host, host port, fabric, or storage port) of volumes that are linked to the host group.

During configuration of SAN fabrics and paths, the HBA WWN nickname helps you confirm physical configuration information. You can:

- Check the storage HBA WWN nicknames in the list of volumes.
- Specify or change the storage HBA WWN nicknames related to the host.
- View the HBA WWN nickname to confirm that the host port of the path to which a volume will be allocated is appropriate.
- Change the storage configuration, such as replacing an HBA and specifying the nickname for the replacement storage HBA WWN that is registered in the host group.

The following figure illustrates the WWN nicknames created using the host name, slot number, and HBA port.

WWN nickname examples:

- (Host Name)_(Slot Number)_(HBA Port)
- (Host Name)_(Slot Number)_(Fabric Number)
- (Host Name)_(Slot Number)_(Fabric Number)_(Port Number)

There are two options for editing a WWN nickname that is defined in a host group:
• Collectively edit the WWN nickname for all related host groups. When this option is selected, the WWN nickname is applied to all host groups that have the same WWN.
• Edit the WWN nickname of an individual host group. When this option is selected, only the WWN nickname of the individual host group is changed.

Tip: If a nickname is set to a WWN by using a storage system management tool, such as Storage Navigator, you can view the latest WWN nickname by refreshing the storage system information. Also, if there are multiple WWN nicknames set to the host groups on the storage system, only one WWN nickname for the port on the host is selected and displayed automatically.

Related tasks
• Editing a WWN nickname on page 368

Editing a WWN nickname
You can specify a new WWN nickname, or change or delete an existing nickname, for storage HBA WWNs that are registered in a host group.

Prerequisites
Register HBA WWNs for which nicknames will be specified in the host group.

Procedure
1. On the Resources tab, select Hosts.
2. After selecting the target operating system, select a target host, and then click More Actions > Edit WWN Nicknames.
3. From the Storage system drop-down list, select a storage system.
 • All Storage Systems: Displays a list of WWNs that belong to the host group related to the selected host.
 • Specific storage system: Displays a list of WWNs that belong to the host group related to the selected host and storage system.
4. From Edit option, select one of the following:
 • Edit WWN nickname for all related host groups: Applies the WWN nickname setting to all storage host groups.
 • Edit WWN nickname for individual host groups: Applies the WWN nickname to individual host groups in the storage system selected.
5. In the Nickname column, enter a WWN nickname or modify the existing WWN nickname. If All Storage Systems and Edit WWN nickname for all related host groups is selected, the minimum number of character limit allowed is applied to all storage systems.
Tip: To delete a WWN nickname, clear the text.

6. (Optional) Update the task name and provide a description.
7. (Optional) Expand Schedule to specify the task schedule.
 You can schedule the task to run immediately or later. The default setting is Now. If the task is scheduled to run immediately, you can select View task status to monitor the task after it is submitted.
8. Click Submit.
 If the task is scheduled to run immediately, the process begins.
9. (Optional) Check the progress and result of the task on the Tasks & Alerts tab. Click the task name to view details of the task.

Result
The WWN nickname edits are applied to the WWNs registered in the host group.

Related concepts
• About managing WWNs by using nicknames on page 366

Searching HCS resources
This module describes using search to locate, work with, and report on storage resources.

About searching HCS resources
Search finds storage and host resources quickly and easily, and allows you to work with the resources from the search results.

Search is useful for:
• Investigating and working with storage resources - for example, you can quickly find a host and allocate a volume to the host. Note that when you click on a search results link, you will automatically go to the resource in the Resources tab so you can work with the resource, or you will get more detail on the item, as with volumes.
• Reporting on storage resources - for reporting, search results and related detail can be saved as CSV files using the Export to CSV button, or from the Actions menu. Note that CSV (comma separated values) files can be opened by many spreadsheet applications for review or editing.

Search methods include:
• Keyword search - a search on user entered text. You can enter a full or partial text string and search specific fields related to storage resources, such as:
 ○ Storage Systems - search names, IP addresses, and serial numbers
- Hosts - search names, IP addresses, iSCSI names and WWNs
- Volumes - search volume IDs that match the keyword, or volume labels
- Parity Groups - search parity group names
- DP Pools - search IDs that match the keyword, and names
- Logical Groups - search names or descriptions

- Criteria search - a search on attribute information, for example a volume search where the volume belongs to a RAID 5 parity group.
 - Criteria searches can be saved by the user, and optionally, shared with others
 - Note that saving searches requires a Tiered Storage Manager license

Related tasks
- Keyword search on page 370
- Criteria search on page 371

Keyword search

To perform a keyword search, locate the Search box on the upper right side of the GUI. The search box is always visible.

Procedure

1. Enter a full or partial text string in the Search box. A partial string will generally produce more search results.

2. By default, all resources are searched when you press Enter. You can narrow the scope of your search using the down arrow, selecting Search Keyword for, and selecting a specific resource to search on. This executes the search and displays results. Each resource has an icon that appears in the search box when it has been selected, and is the new default resource.

3. The Keyword Search dialog box is displayed. If there are no search results for an All Resources search or you entered a null string, you will see a help message. A search on a specific resource with no results displays a resources tab with no results listed.

4. When search results are displayed, click the resource name hyperlink to go to the Resources tab for the resource. When viewing the detail pane for the resource (for example, a list of volumes for a host) you can use the Export to CSV button (or Actions menu) to generate a resource report for selected detail pane items (for example, all or some of the volumes for a host), or you can select detail pane items to perform an operation (for example, selecting a volume and editing the volume label).

5. If the current search results do not meet your needs, or you want to run multiple searches without closing the Keyword Search dialog box, you can repeatedly enter a new search string, and select the resource to search. To perform a criteria search for storage resources, click the More Searches button to start the Search dialog box.
Criteria search

To perform a criteria search, locate the Search box on the upper right side of the GUI. The search box is always visible.

Note: A Tiered Storage Manager license is required to save searches, as described below.

Procedure

1. To start the Search dialog box, click down arrow, and select More Searches.
 - Search criteria are specified in the left pane.
 - Search results are displayed in the right pane.
2. Use Search for: to select one of the following storage resources:
 - Volumes
 - Parity Groups
 - DP Pools
 - Free Space
3. To the right of Search for:, select All storage systems, or select a specific storage system.
4. The Basic and Advanced tabs provide further refinements for your search. The selected storage resource (volumes, parity groups, etc.) affects the search criteria available under the Basic and Advanced tabs. This can be seen by changing the selected storage resource and reviewing available options.
5. To run your search, click Search. When results are displayed, display controls are provided for easier viewing, including tiling options, a maximize control, and the Column Settings button for controlling what data is displayed. Depending on the resource being displayed, you will see buttons for performing an action on selected resources. For example, when looking at a list of volumes, you will be able to Allocate Volumes (to a host), Create Pool (only for storage systems supporting this feature), Edit Label (volume labels, which can be searched on later), Export to CSV (reporting) or More Actions (more volume related tasks).
6. To save a search, click Save, and enter a name and description, then select Save as a public search (checkbox) to share the search with others. Note that saved searches are displayed according to the storage...
resource. For example, if you run a parity group search and save it, it only displays when the selected storage resource is **Parity Group**. Similarly, changing the storage resource to **Volumes** will display only saved volume searches.

7. To run a saved search, select the storage resource, and select the saved search.

8. To edit a saved search, run it, then click **Save** to start the edit dialog box. Leave **Name**: as is. You may edit **Description:** and change **Save as a public search**, then click **Save** to close the edit dialog box. If you have a saved search selected and change the search criteria, run the search, click **Save**, edit the description etc., and click **Save**.

9. To delete a saved search, run the saved search. When the search completes, click **Delete Saved Search**.

Related concepts
- [About searching HCS resources](#) on page 369

Related tasks
- [Keyword search](#) on page 370

Related references
- [Criteria search dialog box](#) on page 372

Criteria search dialog box

Use this dialog box to refine the search criteria you use for the volumes, parity groups, DP pools, and free space.

After you have selected the storage resources and storage systems to search, you can choose the Basic tab or the Advanced tab options in this dialog box to refine your search.

Options differ with the selected storage resource as indicated by Vo (volumes), PG (parity groups), TP (DP pools), and FS (free space) in the following table.

When you enter the minimum required information in this dialog box, the Search button activates the search using the defined criteria. Click the Save button to name and save the search criteria you defined for later use.

The following table describes the dialog box fields, subfields, and field groups. In the Basic tab, a **field group** is a collection of fields that are related to a specific action or configuration. You can minimize and expand field groups by clicking the double-arrow symbol (>>).

The Advanced tab contains the following attributes:
- All available categories for a search type (volumes, parity group, etc.) can be combined into a compound search using the +/- buttons.
- You can create a compound search where All/Any conditions need to be met (and/or logic).
A logical operator drop down (unlabeled) is provided for each category in your search. Values are text or symbols, and can include: in, not in, is between, is, is not, starts with, contains, =, >, >=, <, <=, and<>.

The Value field provides either a drop-down list of values, or prompts you to enter data (names or numbers). When entering data, a valid entry displays a blue border, an invalid entry (format, spacing) displays a red border.

Saved compound searches are re-displayed in total (all set categories, attributes and values) when you run your saved search. You can review, modify, and run new search variations, and save them.

Use Column Settings to correlate displayed search results with your search. This helps validate that your search is returning the expected results.

Table 10-1 Search dialog box

<table>
<thead>
<tr>
<th>Basic Tab</th>
<th>Description</th>
<th>Vo</th>
<th>PG</th>
<th>TP</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Status</td>
<td>Defaults to Any, or you can select Allocated (in-use) volumes only or Unallocated (ready-for-use) volumes only.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Volume Type</td>
<td>Defaults to Any, or you can select Basic volume (a volume not from a DP Pool), or DP volume. Note that DP volumes use up pool space on demand, while basic volumes are created with a static space allocation.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Host Group</td>
<td>You can find volumes for any host, or filter by a selected host. For example, using any volume status and any volume type for a specific host finds all volumes for the host. You can refine your search with volume status (allocated, unallocated) and volume type (basic, DP).</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Performance Criteria</td>
<td>This is Drive type (Any, FC, SATA, SAS, etc.), Drive speed (Any, 7200, 10000, 15000, etc.), and Chip Type (Any, SLC, MLC).</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Availability Criteria</td>
<td>RAID Level (RAID 1, 5, 6, etc.) and Replication Function (Any, Simplex volume, Copy volume).</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Capacity Criteria</td>
<td>Volume capacity (minimum or maximum in TB, GB, MB) and Used capacity (min, max in TB, GB, MB). For DP Pools, the field is Free capacity greater than, or less than a user supplied value in TB, GB, MB.</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Subscription Criteria</td>
<td>For DP Pools only, Subscription, Subscription warning. Subscription limit are fields where a threshold is greater than or less than a user supplied percentage value. For example, find DP volumes subscribed at greater than 50%.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Advanced Tab</td>
<td>Description Note that the examples below describe all available categories, using volume search examples, except the final category search which applies to DP Pools only.</td>
<td>Vo</td>
<td>PG</td>
<td>TP</td>
<td>FS</td>
</tr>
<tr>
<td>Storage System</td>
<td>For a Volume search, using Attribute, you can specify Storage System Vendor, or Storage System Model (useful if you have multiple storage systems of the same type). The Value drop down provides available vendors or models. You can invert the search results using the is/is not operator. The +/- buttons allow the addition or removal of additional search conditions.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
switching to other supported search types, investigate the Attribute and Value fields to see what is available.

ID/Number/ Name	For a Volume search, using Attribute you can specify a Parity Group, Pool ID, or LDEV ID as the means of locating volumes. The Value field prompts for ID information. The is between operator lets you find volumes in a range, for example, LDEV IDs 00:00:00-00:00:05.	x	x	x
Allocation	For a Volume search, using Attribute you can specify Allocated, then qualify it using a Yes/No selection in the Value field.	x	-	-
Volume Type	For a Volume search, using Attribute you can specify DP Volume Type, then qualify it with Basic, DP, or DP Pool in the Value field.	x	-	-
Label	For a Volume search, using Attribute, you can specify Label, then qualify it by entering a label value in the Value field. To use a partial text string, use the starts with or contains operators.	x	-	-
Performance	For a Volume search, using Attribute you can specify Drive Type, Drive Speed (RPM), or Chip Type. Drive types, drive speeds, and chip types are displayed in Value.	x	x	-
Availability	For a Volume search, using Attribute you can specify RAID Level or Copy type and role. RAID levels or replication types will be displayed in Value. Note there may be 20 or more replication types listed so you can be very specific in your search.	x	x	-
Capacity	For a Volume search, using Attribute you can specify Volume Capacity, Physical drive size, Used Capacity, or Used %. Enter a GB, TB, or MB value in Value.	x	-	x
Consumer	For a Volume search, using Attribute you can specify I/O Consumer Host, Storage Port, or Host Group/iSCSI Target. Enter a text value in Value. This category is meaningless if searching for unallocated volumes.	x	-	-
Security	For a Volume search, using Attribute you can specify Encryption, and then qualify it using a Yes/No selection in the Value field.	x	-	-
Migration	For a Volume search, using Attribute you can specify Volume Lock Status, and then qualify it using a Locked/Unlocked selection in the Value field.	x	-	-
Emulation	For a Volume search, using Attribute you can specify Emulation, and then qualify it by your selection in the Value field (for example, Open-V emulation).	x	-	-
Logical Partitions	For a Volume search, using Attribute you can specify CLPR or SLPR, and then enter a number, for example 1, in the Value field.	x	-	-
Subscription	For a DP Pool search, using Attribute you can specify Subscription (used space), Subscription Warning (warning threshold for volume creation), or Subscription Limit (threshold where volume creation is not allowed), and enter a number representing a percentage (you do not need to enter the % symbol). For example, you can find DP Pools with a subscription limit equal to 120%, or warning thresholds equal to or greater than 70%. Use Column Settings to ensure these attributes are displayed in your search results.	-	-	x

Related tasks

- [Criteria search](#) on page 371
Generating resource reports

This module describes how to export information about hosts, file servers, logical groups (public and private), user groups, and search results to a CSV file.

About generating reports

Information about registered storage systems and hosts and other items can be output to a CSV file. The CSV file can be used as a report, or used as a source file to generate customized reports.

The following items are examples of types of information that can be output to a CSV file:

- Host information
 - A list of hosts managed by Device Manager
 - Information about hosts for each OS
 - Information about volumes assigned to hosts
- File server information
 - A list of file servers managed by Device Manager
 - Information about file systems or file shares created on the file server
 - Information about volumes assigned to the file server
- Logical group information
 - A list of logical groups managed by Device Manager
 - Information about hosts or volumes in the selected logical group
- Resource search results
 - Information about volumes, parity groups, DP pools, and free capacity displayed in search results.
- Access control information
 - Relationship between user groups and users
 - Relationship between user groups, resource groups, and roles

Related tasks

- Exporting host information to a CSV file on page 375
- Exporting file server information to a CSV file on page 376
- Exporting logical group information to a CSV file on page 377
- Exporting search results to a CSV file on page 377
- Exporting access control information for resources to a CSV file on page 378

Exporting host information to a CSV file

Host information and a summary of the volume capacity allocated to hosts can be output to a CSV file.
Procedure

1. From the Resources tab, select Hosts.
2. Expand the tree and select the resource whose information you want to export to a CSV file.
 - To export a list of all hosts managed by Device Manager, select All Hosts, and from the Actions menu located in the corner of the application pane, select Export to CSV.
 - To export a list of hosts for a specific OS, select the target OS in the tree view, and click the Export to CSV button.
 - To export host volume information, from the Hosts list click the host name link to list volumes, and click Export to CSV.
3. Click the Save button and specify the storage location for the CSV file.

Result
A CSV file is saved to the specified location.

Related concepts
- About generating reports on page 375

Exporting file server information to a CSV file
File server information, including assigned volumes and created file systems, can be exported to a CSV file. For cluster configurations, information is output for each cluster.

Procedure

1. From the Resources tab, select File Servers.
2. Select the resources whose information you want to export to a CSV file.
 - To output a list of all clusters and all file servers managed by Device Manager, select All File Servers.
 - If the file server belongs to the Hitachi NAS Platform family (HNAS), to output information about system drives assigned to the file server or a list of file systems on the file server, expand the tree, select the target cluster or file server, and then select tabs according to the information that you need. To output a list of file systems or information about file shares for each Enterprise Virtual Server (EVS), expand the tree, select the target EVS, and then select tabs according to the information that you need.
 - If the file server is a Hitachi NAS Platform F (HNAS F) or Hitachi Data Ingestor (HDI), to output information about volumes assigned to the file server or a list of file systems on the file server, expand the tree, select the target cluster, and then select tabs according to the information that you need. To output a list of file systems or information about file shares for each file server (node), expand the
tree, select the target file server (node), and then select tabs according to the information that you need.

3. Click **Export to CSV**.
4. Click the **Save** button and specify the storage location for the CSV file.

Result
A CSV file is saved to the specified location.

Related concepts
- [About generating reports](#) on page 375

Exporting logical group information to a CSV file

You can save information about either of the supported logical group types (Public Logical Groups or Private Logical Groups) to a CSV file, including allocated volume capacity and assigned hosts and volumes.

Procedure

1. From the **Resources** tab, select **Logical Groups**.
2. Select the logical group whose information you want to export to a CSV file.
 - To output a list of all logical groups managed by Device Manager, select **Logical Groups**.
 - To output information about hosts or volumes included in logical groups, expand the tree, and then select the logical groups.
3. Select **Export to CSV** from the **Actions** menu located in the corner of the application pane.
4. Click the **Save** button and specify the storage location for the CSV file.

Result
A CSV file is saved to the specified location.

Related concepts
- [About generating reports](#) on page 375

Exporting search results to a CSV file

You can save your storage resource search results to a CSV file.

Procedure

1. From the **Search** pull-down menu, select **More Searches**, then specify search conditions and perform your search.
2. Click the **Export to CSV** button.
3. Click the **Save** button and specify the storage location for the CSV file.
Result
A CSV file is saved to the specified location.

Related concepts
- About generating reports on page 375

Exporting access control information for resources to a CSV file
You can export user-related information, such as access control information, to a CSV file.

Procedure
1. From the Administration tab, select User Groups.
2. From the User Groups tab or Users tab, click the Export to CSV button.
3. Click the Save button and specify the storage location for the CSV file.

Result
A CSV file is saved to the specified location.

Related concepts
- About generating reports on page 375

Using reports to verify system changes
This topic explains Device Manager - Storage Navigator reports and provides instructions for creating, viewing, and deleting them.

You can create reports of your storage system’s physical configurations and logical settings. Doing this provides a copy of the settings when you intend to make changes. If you make a similar report after the changes, then you can compare the reports to verify that new settings were made as intended.

Device Manager - Storage Navigator reports can be saved in a CSV or HTML file. Tables in the HTML version of the configuration report are sortable.

Viewing a Device Manager - Storage Navigator report
Prerequisites
- Users that create the report can view the report.
- Adobe Flash Player is necessary to view reports.
Downloading and viewing a system configuration report

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Right-click on the storage system and select **Reports**.
 - For other available storage systems: From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. Specify the report to download.
4. Click **Download Reports**.
5. Specify a folder in which to save a `.tgz` file.
7. Display the report in the following ways:
 - For an HTML format report: Open `html\index.html` file in the extracted folder.
 - For a CSV format report: Open a `csv` file in `csv` folder in the extracted folder.

Viewing a report in the Reports window

You can view only HTML format reports in the **Reports** window. You can view CSV format reports in the previous procedure.

Procedure

1. On the **Resources** tab, expand the **Storage Systems** tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Right-click on the storage system and select **Reports**.
 - For other available storage systems: From the **Actions** list in the application pane, select **Element Manager**. Refer to the documentation for the native management tool for your storage system.
3. Click the report name to display in the **Reports** window.

 The report is displayed in the **Reports** window.

 In the **Reports** window, click the reports name in the list at the left, and you can view the report at the right.
Creating a configuration report

You can create up to 20 configuration reports and then view or download them.

Procedure

1. On the Resources tab, expand the Storage Systems tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Right-click on the storage system and select Reports.
 - For other available storage systems: From the Actions list in the application pane, select Element Manager. Refer to the documentation for the native management tool for your storage system.
3. Click Create Configuration Report.
4. Specify a task name and click Apply. This task name is used as the report name in the Reports window. This process takes approximately 10 minutes to complete.
5. Click Refresh to update the Reports window. The created report appears in the list.

Deleting a configuration report

You can delete a report when you no longer need it, or to make room in the Reports window when the report limit is about to be reached.

Procedure

1. On the Resources tab, expand the Storage Systems tree, and select the target storage system.
2. Choose one of the following options.
 - For Virtual Storage Platform G1000 storage systems: Right-click on the storage system and select Reports.
 - For other available storage systems: From the Actions list in the application pane, select Element Manager. Refer to the documentation for the native management tool for your storage system.
3. Specify the report to delete.
4. Click Delete Reports.
5. Click Apply.
Managing tasks

This module describes how to manage tasks.

- About tasks
- Customizing which tasks display in the global monitoring bar
- Viewing HCS task status
- Rescheduling HCS tasks waiting to be executed
- Stopping running data migration or data placement profile tasks
- Canceling scheduled HCS tasks
- Moving HCS tasks to the HCS Task History tab
- Restarting a failed or stopped HCS task
- Deleting HCS tasks
- Viewing system task status
- Managing system tasks
- Troubleshooting system tasks
- Viewing data collection task status
- Restarting a data collection task
About tasks

Tasks are submitted to perform specific functions, such as to allocate or create volumes, or to group storage resources. For tasks that you or other users submit, task status and task results display in a task list.

The method for submitting tasks and the tasks you can run differ depending on the task type. There are three types of tasks in HCS:

- **HCS Tasks**

 HCS tasks are tasks that are submitted using Hitachi Command Suite. Typically, you schedule HCS tasks to run at a time that is best suited for your storage system environment, such as during a period of low storage system activity. Resources connected to a task, such as volumes and parity groups, are reserved so that other tasks that use these resources do not run at the same time. The status of each registered task changes when the task finishes by completing successfully, failing, or stopping. Until a registered task finishes, you should not perform any other tasks on any volumes included in the task.

 From the Tasks & Alerts tab, HCS Tasks list, depending on the status of the task, you can:

 - Cancel tasks that are in Waiting status
 - Stop migration tasks or data placement profile tasks
 - Move finished tasks to the HCS Task History tab

 You cannot restart deleted tasks or tasks that have been moved to the HCS Task History tab. Additionally, HCS tasks that have been moved to the history are automatically deleted in order beginning from the oldest when the number of tasks exceeds 100,000.

 - Reschedule tasks that are in Waiting status
 - Delete completed tasks
 - Restart failed or stopped tasks

 To restart a task, it must meet the requirements that allow it to be restarted. Restarted tasks inherit the same configured values that were initially set when the task was registered and submitted. The configuration of the resource might have changed between the time when the task was initially submitted and when it is restarted, so when restarting a task, verify the configuration to determine whether you can restart it.

 - Receive email notification of the completion of migration tasks by specifying an email address when submitting migration tasks. Email notification is sent when the task completes, either by completing successfully, failing, or stopping, which makes it unnecessary to manually monitor the progress of a task. Use email notification in cases where you want to verify the results for a task, when it is necessary to contact a server administrator or application administrator regarding
changes to storage system settings, or when you submit a task that could take a long time to complete.

- **System Tasks**
 System tasks are specific to Virtual Storage Platform G1000 storage systems, and are submitted from Hitachi Device Manager - Storage Navigator.
 From the Tasks & Alerts tab, System Tasks list, you can view:
 - Task name
 - Task type
 - User
 - Storage system (VSP G1000)
 - Status (link)

Clicking the status link will display additional status information in a **Status Details** window. For example, when a system task runs (Delete LDEVs for example) an Update Database sub-task that applies storage configuration changes to the HCS database also runs. When you click the status link of the primary task (Delete LDEVs), you will see the Update Database sub-task displayed in the **Status Details** window. Note that the Update Database task is also displayed in the Data Collection Tasks tab like other HCS data collection activities.

To take further action on a system task, you would click Manage System Tasks and in the displayed window actions would include:
 - View task details
 - Delete or modify task settings
 - Apply configuration changes as a result of the task completion
 - Suspend or resume tasks (system tasks cannot be restarted)

- **Data Collection Tasks**
 Data collection tasks are listed on the Administration tab, under Managed Resources, on the Data Collection Tasks tab. These tasks can be sorted and filtered like tasks listed on the Tasks & Alerts tab.
 Data collection tasks are created by adding, refreshing, editing, and removing storage systems, file servers, and hosts from the Administration tab or the Resources tab.
 Data collection tasks are also created by submitting System tasks that perform an Update Database sub task.
 On the Data Collection Tasks tab, in the data collection tasks list, you can:
 - Check task results and task status
 - Delete tasks
 - Restart tasks

Note: Adding a file server is not registered as a data collection task because adding a file server is performed by registering Device Manager information in the management software of the file server.
Host information can be synchronized with Compute Systems Manager hosts. This task is listed as a data collection task.

The global monitoring bar provides the following task functionality:
- Displayed at the bottom of the HCS GUI, these task status links provide convenient access for reviewing and managing HCS task and System task information from the Tasks & Alerts tab. The numbers displayed on the global monitoring bar are the sum of HCS tasks and system tasks. Note that data collection tasks cannot be accessed from the global monitoring bar. Task status links provide easy access to the following task categories:
 - Waiting (Waiting, Suspended)
 - In Progress (In Progress, Stopping, Stopping Immediate, Canceling, or Deleting, or Updating Database)
 - Completed (Completed, Canceled, or Stopped)
 - Failed (Failed or Database Update Failed)
- Clicking a task status link will display a dialog box where you can review and manage HCS tasks and System tasks on separate tabs. Filtering and display controls in the dialog box are the same as in the Tasks & Alerts tab. The management options available in the dialog box depend on the task status category. For example, you can stop an in progress HCS task, but the stop option would not be available for completed or failed HCS tasks.
- Depending on the category of tasks you select, you can also control which tasks are visible using a cut off date, or by moving tasks to task history.

Take the following actions to troubleshoot task errors:
- If, during the execution of a task, an error message displays indicating a database blockage, terminate the Device Manager server, and then recover the database. After recovering the database, restart the Device Manager server, and then refresh the storage systems. For the task that ended in an error, review the storage system logs and then, if necessary, run the task again.
- If a window does not display or if information to be displayed cannot be obtained, follow the instructions in the displayed error message, check the network status, and then run the task again or contact the server administrator.

Related tasks
- Viewing HCS task status on page 385
- Rescheduling HCS tasks waiting to be executed on page 386
- Stopping running data migration or data placement profile tasks on page 386
- Canceling scheduled HCS tasks on page 387
- Moving HCS tasks to the HCS Task History tab on page 387
- Restarting a failed or stopped HCS task on page 388
- Managing system tasks on page 390
Customizing which tasks display in the global monitoring bar

You can control which tasks are visible when using the task status links by filtering tasks with a cut off date or moving failed tasks to task history.

The cut off date serves as a filter for the tasks from the Tasks & Alerts tab. You can change the date to restore older tasks to your view.

Moved tasks are can be displayed from Tasks & Alerts, HCS Task History tab.

Note: The Move to History button is also available in the Tasks & Alerts tab and applies to all task types, not just failed tasks. You may also select failed tasks and click Delete Tasks to permanently remove them.

Procedure

1. Specify a cut off date to reduce the number of displayed tasks, and/or move failed tasks to the HCS Task History tab, as follows:
 a. Click Failed or Completed to display tasks. Click Edit Duration and specify a cutoff date, and click OK.
 b. Click Failed, select HCS failed tasks, and click Move to History.

Result

The size of the visible task list is reduced.

Related concepts

- About tasks on page 382

Viewing HCS task status

View the status of HCS tasks to see if the task has completed, summary information about the task, and task configuration details.

Procedure

1. On the Tasks & Alerts tab, select All Tasks.
2. View the Status column on the HCS Tasks tab or on the HCS Task History tab to determine if a task has completed.
3. Click the task name link in the Task column on either the HCS Tasks tab or the HCS Task History tab to view the Task Details window, which provides the task details and task summary.
If a task has failed, the Message field provides a description for why the task failed.

Related concepts
- [About tasks](#) on page 382

Rescheduling HCS tasks waiting to be executed

You may reschedule HCS tasks waiting to be executed.

Procedure

1. On the **Tasks & Alerts** tab, select **All Tasks**.
2. Select the waiting task you want to reschedule from the **HCS Tasks** tab and click the **Reschedule Tasks** button to specify a new schedule from the dialog box.
3. You can now either execute the rescheduled task or confirm that the waiting task is rescheduled by viewing the **HCS Tasks** list.

Related concepts
- [About tasks](#) on page 382

Related tasks
- [Viewing HCS task status](#) on page 385

Stopping running data migration or data placement profile tasks

Data migration or data placement profile tasks can be stopped during execution, in the following ways:

- **Normal stop:**
 A task stop request is issued and processing that is currently being performed is continued. For data migration, tasks are stopped when data moving processing completes. For Data Placement Profile operations, tasks are stopped when processing for each storage system completes. Processing that has not been started is stopped. It might take a long time after a task stop request is issued before the task stops completely. Stopped tasks can be restarted.

- **Immediate stop:**
 If you select the Stop the tasks immediately check box (immediate stop), or if a task is performed that searches for inconsistent data placement profiles when a storage system is refreshed, all processes are stopped immediately. For data migration tasks, since data that was being migrated remains in the target volume, the user must delete the data in the target
volume. Therefore, we recommend that you use immediate stop only for emergencies.

The storage administrator checks the task progress and results in the Tasks & Alerts tab allowing the schedule of a task that is waiting to be changed.

Procedure

1. In the **Tasks & Alerts** tab, select **All Tasks**.
2. From the **HCS Tasks** tab, select one or more running tasks that you want to stop, and click **Stop Tasks**.
3. In the confirmation dialog box, click **OK**.
4. In the HCS tasks list window, confirm that the status of the task is stopped.

Note: To access the **Task Details** dialog box to see the point at which a task was stopped, click **All Tasks** in the **Tasks & Alerts** tree and click the task name link in the summary column of the **HCS Tasks** tab.

Related concepts

- [About tasks](#) on page 382

Canceling scheduled HCS tasks

You can cancel scheduled HCS tasks that have not yet started.

Note: You can only cancel tasks that are in Waiting status.

Procedure

1. On the **Tasks & Alerts** tab, select **All Tasks** and select a task from the HCS tasks list.
2. Click **Cancel Tasks**.

Result

Upon cancellation of a task the status of the task appears as Canceled.

Related concepts

- [About tasks](#) on page 382

Moving HCS tasks to the HCS Task History tab

You can move completed, failed, stopped, or canceled tasks from the HCS Tasks tab to the HCS Task History tab.
For example, you could manage the completed and cancelled tasks by moving them to the HCS Task History tab and keep the submitted, stopped, and failed tasks in the HCS Tasks tab until these tasks run to completion or are resolved.

After a task has been moved to the HCS Task History tab, it cannot be moved back to the HCS Tasks tab.

Note: After a task has been moved to the HCS Task History tab, the task cannot be restarted again.

Procedure

1. On the **Tasks & Alerts** tab, select **All Tasks**.
2. On the **HCS Tasks** tab, select one or more tasks and click **Move to History**.
3. Verify the tasks to move and click **OK**.

Result
The selected tasks are moved to the HCS Task History tab.

Related concepts
- [About tasks](#) on page 382

Related tasks
- [Deleting HCS tasks](#) on page 389

Restarting a failed or stopped HCS task

Any HCS tasks that have failed or stopped prior to completion can be restarted. Restarted tasks inherit the values that were set at the time the task was submitted.

Note: After a HCS task has been moved to the HCS Task History tab or has been deleted, it cannot be restarted. If a HCS task has been restarted several times, and the last instance of the task that you attempted to restart is deleted, the task cannot be restarted again.

Prerequisites

Verify that the status of the target HCS task is Failed or Stopped.

Procedure

1. On the **Tasks & Alerts** tab, click the **HCS Tasks** tab, and select a **Failed** or **Stopped** task.
2. For the selected **Failed** or **Stopped** task, view the **Task Details** dialog box, and verify in the Message field whether the task can be restarted.

3. Click **Restart Task**.

4. Click **Submit** to restart the process.

5. You can check the progress and the result of the task on the **Tasks & Alerts** tab.
 Verify the results for each restarted task by viewing the details of the task.

Result

The status of the task you restarted no longer appears as Failed or Stopped in the list of HCS tasks.

Related concepts

- [About tasks](#) on page 382

Related tasks

- [Viewing HCS task status](#) on page 385

Deleting HCS tasks

You can delete tasks from the HCS Tasks tab or the HCS Task History tab.

Procedure

1. On the **Tasks & Alerts** tab, select **All Tasks**.
2. On the **HCS Tasks** tab or **HCS Task History** tab, select one or more tasks and click **Delete Tasks**.
3. Click **OK**.

Result

The selected tasks are deleted.

Viewing system task status

Viewing the status of system tasks allows you to see if the task has completed, as well as other details.

Procedure

1. On the **Tasks & Alerts** tab, select **All Tasks**.
2. On the **System Tasks** tab, view the **Status** column to determine if a task has completed.
3. To view task details, on the System Tasks tab, click Manage System Tasks, select the storage system for which the task was submitted, click OK, and review the task list.

Note: Click the Status column link to view the Status Details window, allowing you to view the progress of sub-tasks such as Update Database. Use the Data Collection Tasks tab to view details of the Update Database sub-task or to re-execute the task.

Related concepts

- About tasks on page 382

Related tasks

- Managing system tasks on page 390
- Troubleshooting system tasks on page 391

Managing system tasks

If your storage system is Virtual Storage Platform G1000, some operations are registered as system tasks.

With system tasks, you can view task details, and suspend, resume, cancel, or prevent tasks from being automatically deleted.

Procedure

1. On the Tasks & Alerts tab, select All Tasks.
2. On the System Tasks tab, click Manage System Tasks.
3. Select the storage system where the task is registered and click OK.
4. Select a task and choose one of the following options:
 - Click Delete Tasks to delete or cancel a task.
 - Click Suspend Tasks to suspend a queued task.
 - Click Resume Tasks to resume a suspended task.
 - Click More Actions > Enable Auto Delete to delete completed tasks when the task list is full.

Note: HCS can manage many storage systems. Therefore you can manage up to 100,000 tasks before the oldest tasks start getting deleted. Because system tasks are created for VSP G1000 storage only, the system task list will display 384 tasks (for each VSP G1000 storage system), including up to 128 tasks with a status of In Progress, Waiting, or Suspended, and up to 256 tasks with a status of Completed or Failed. Enable Auto Delete is recommended.

- Click More Actions > Disable Auto Delete to keep tasks after they are completed.

HITACHI COMMAND SUITE USER GUIDE
5. Verify the settings and click **Apply**.

Tip: The Tasks pane automatically updates every 60 seconds by default. To change the interval, from the tree view, right-click the target storage system, and then select **Other Functions**. From the displayed window, click **Setting > Environmental Settings > Edit Information Display Setting**, then specify the refresh interval for the tasks list.

Related concepts
- [About tasks](#) on page 382

Related tasks
- [Troubleshooting system tasks](#) on page 391
- [Viewing system task status](#) on page 389

Troubleshooting system tasks

Verify the status of queued system tasks in Virtual Storage Platform G1000 storage systems that do not successfully complete within a reasonable amount of time and troubleshoot as necessary.

Check the details of a system task that has not completed successfully. System tasks cannot be restarted but system tasks can be suspended or resumed.

Note: This procedure is for troubleshooting problems for tasks related to changing a storage systems configuration, not for update database tasks, which are recorded in the Data Collection Tasks tab.

Procedure

1. On the **Tasks & Alerts** tab, select **All Tasks**.
2. Check the task **Status** column in the **System Tasks** tab to determine if a task has completed.
3. To view task details, click **Manage System Tasks**, select the storage system where the task is registered, and click **OK**.
4. Verify the task status and details by performing the following actions:
 - When a task status is **Failed**, click the link to view the reason. You can correct the problem and submit the task again. Click **Delete Tasks** to delete the task that failed.
 - When a task does not complete, it might be that the task list contained more than the maximum number of tasks allowed (384). To resolve this problem, click **More Actions > Enable Auto Delete**. When **Enable Auto Delete** is set, tasks are automatically deleted after they successfully complete and exceed the maximum allowed number.
Note: HCS can manage many storage systems. Therefore you can manage up to 100,000 tasks before the oldest tasks start getting deleted. Because system tasks are created for VSP G1000 storage only, the system task list will display 384 tasks, including up to 128 tasks with a status of In Progress, Waiting, or Suspended, and up to 256 tasks with a status of Completed or Failed. Enable Auto Delete is recommended.

- When a task does not complete, it can be that the storage system configuration changed. To diagnose this, check whether the Resource Lock is displayed for a long time. If so, this can indicate that another program is still running. Wait until that program finishes and submit the task again.
- When the percentage of progress for an ongoing task is slow to indicate a change, it can be that another task operation is in progress. Continue to check on the status of the task until it completes.

Related concepts
- About tasks on page 382

Related tasks
- Managing system tasks on page 390
- Viewing system task status on page 389

Viewing data collection task status
Viewing the status of data collection tasks allows you to see if the task has completed, as well as other details.

Procedure
1. On the Administration tab, select Managed Resources.
2. On the Data Collection Tasks tab, view the Status column to determine if a task has completed.
3. To view task details, on the Data Collection Tasks tab, click the task Status link to review the Data Collection Task Detail dialog box. If a task has failed, look for a diagnostic message in the Message field.

Note: If you see Update Database tasks, these are the result of System tasks being submitted. For example, if a System task is run to delete LDEVs, an Update Database sub-task to update the HCS database is also run and is recorded under Data Collection Tasks.

Related concepts
- About tasks on page 382
Related tasks

- Restarting a data collection task on page 393

Restarting a data collection task

Data collection tasks might fail due to a communication error or because the target storage system has an exclusive control lock in place. Data collection tasks that fail before they complete can be restarted. Restarted tasks inherit the values that were set when the task was registered.

Procedure

1. On the **Administration** tab, select **Managed Resources**.
2. On the **Data Collection Tasks** tab, review the **Status** column for failed tasks, and click the **Status** column link for the data collection task you want to restart.
 View the Message box in the **Data Collection Task Detail** dialog box to determine whether the task can be restarted.
3. Click **Restart Task** and verify the information in the summary list of the **Restart Task** dialog box.
4. Click **Submit** to restart the task.
5. Verify the task status on the **Data Collection Tasks** tab.
 Verify the results for each task by viewing the details of the task.

Result

The status of the restarted data collection task no longer appears as Failed in the list of tasks.

Related concepts

- About tasks on page 382

Related tasks

- Viewing data collection task status on page 392
Monitoring managed resources and resolving alerts

This module describes how to monitor managed resources and alerts in a Storage Area Network (SAN).

- Monitoring storage resources
- Viewing information summaries
- Analyzing storage system performance
- Analyzing Universal Replicator performance
- Managing alerts
Monitoring storage resources

You can check the status of storage resources to detect problems and output reports to a CSV or PDF file containing search results or configuration and capacity information about storage systems, hosts, volumes, logical groups, and other storage resources.

If you have the Tiered Storage Manager license, you can see the operational status of storage resources from the Mobility tab and perform integrated operations to optimize data placement.

If you have the Tuning Manager license, you can analyze storage system performance in the Analytics tab. You can identify whether the cause of a performance problem exists in storage systems in response to inquiries from the host and application administrators, and analyze whether storage resources are being used appropriately.

If you have a license for both Replication Manager and Hitachi Tuning Manager, you can check the C/T delta performance of managed copy groups from the UR Performance Analysis window of the Replication tab. This allows you to analyze the cause of C/T delta degeneration and check how to resolve problems.

This information can be used to migrate volumes or add DP pool volumes to optimize storage resources. The following graphics illustrate the flow of monitoring and checking the status of storage resources. To check daily operational status, inquiries from a host or application administrator, see the following respective figures:

```
Start

Check alerts

View summary

Check the capacity and performance of storage resources or performance of replication

Output reports

End
```
In summary, you can:
• View summary information from the Dashboard tab.
• Check alerts from the Tasks & Alerts tab or the dashboard.
• Search storage resources from the Search box on the tabs bar.
• Reference data migration information from the Mobility tab.
• Analyze performance from the Analytics tab.
• Analyze Universal Replicator performance from the UR Performance Analysis window of the Replication tab.

Viewing information summaries
This module describes how to view summary information for registered storage systems and hosts.

About checking system status in the dashboard
The Hitachi Command Suite dashboard shows a summary of tasks, alerts, and activities of registered storage systems.
• **Storage System Alerts:** A list of links for each registered storage system or file server and the associated alerts. You can choose particular severity levels of alerts to be collected in the Storage System Alerts report by clicking the tool icon in the application pane. Note that SNMP traps received from the file server are displayed as alerts. For details about how to specify settings to receive SNMP traps, see the *Hitachi Command Suite Administrator Guide*.
• **Datacenter Utilization - Physical capacities:** A bar chart that provides volume capacity information for Open-Allocated, Open-Unallocated, Open-
Reserved, Mainframe, and Free volumes. This chart applies to all of the managed storage systems, collectively. Because capacities are calculated based on actual volume capacities, the capacity of virtual volumes, such as DP volumes, is not included.

- **Failed HCS Tasks:** A list of failed HCS tasks submitted by you or other users. Each item includes the task name, task type, and description for the failed task. Clicking the Task column link for a task that you submitted allows you to view task details, including error messages. You may not view task details for tasks that you did not submit.

- **Failed System Tasks:** A list of failed System tasks submitted by you or other users. Each item includes the task name, task type, and description for the failed task. Clicking the Status column link for a task that you submitted allows you to view the processing status.

- **Top 10 Consumers:** A list of the ten hosts or file servers having the largest combination of allocated physical and virtual storage capacity. For file servers in a cluster configuration, if the file servers are being managed by System Management Unit v10.1.3070 or later, or by Hitachi File Services Manager v3.2 or later, information is displayed by cluster.
 - The Capacity column reports (capacity of basic volumes + reserved capacity of DP volumes).
 - The Used Capacity column reports (capacity of basic volumes + used capacity of DP volumes).
 - File System Used Capacity indicates the file system space used by file servers or hosts as (the total value calculated from File system Used % for each volume).

Note: The File System Used Capacity is displayed only for hosts that can collect information by using Host Data Collector or Device Manager agent, or for file servers.

This value cannot be collected for a virtualization server.

You can click host or file server links on the Resources tab to see volume details related to capacity, used capacity, and volume type. By reviewing this capacity information, you can efficiently use storage resources and determine whether to migrate data to DP volumes.

- **Tier Residency:** A chart displaying the usage of hardware tiers for each logical group. You can compare the operating information of a logical group and the usage of hardware tiers by checking whether the hardware tiers for the logical group are configured appropriately. You can also select logical groups whose configuration is to be displayed. Click the tool icon in the application pane to configure logical groups that display the usage status of hardware tiers.

- The following file server reporting is available in the Hitachi Command Suite dashboard, when the file servers are registered in Device Manager:
○ **Top 10 File Systems:** When HCS is linked with a file server (Hitachi NAS Platform family, Hitachi NAS Platform F (HNAS F) or Hitachi Data Ingestor (HDI)), information about file systems that have a large capacity usage rate or free area can be checked to see if there is insufficient free space. By default, the allocated capacity usage rate is displayed in descending order. Clicking the column header of other items displays the top 10 file system information again, ordered by the selected item. You can also change the items displayed by clicking the tool icon in the application pane.

○ **Top 10 File Server Storage Pools:** When HCS is linked with a file server (Hitachi NAS Platform family), information about storage pools that have a large capacity usage rate can be checked to see if there is insufficient free space. By default, the capacity usage rate is displayed in descending order. Clicking the column header of other items displays the information again, ordered by the selected item.

○ **Top 10 File System Snapshots:** When HCS is linked with a file server (Hitachi NAS Platform F), information about volumes having a high capacity usage rate can be checked to see if there insufficient free space.

○ **File Level Tier Residency:** When HCS is linked with a file server (Hitachi NAS Platform F), a graph is displayed for each file system tier, showing the usage status of the file systems and the volumes for file snapshots. You can review the usage rate and the used capacity and then expand the file system to increase free space and optimize the used capacity distributed among tiers. If you click the tools icon to start Hitachi File Services Manager, you can review the policy settings on the tiered file system.

Related tasks

- [Accessing the dashboard](#) on page 399
- [Customizing the dashboard](#) on page 400

Accessing the dashboard

When you log in to HCS, the Dashboard tab and reports are displayed by default.

The Dashboard tab reports include:

- Datacenter Utilization - Physical Capacities
- Top 10 Consumers
- Top 10 File Systems
- Top 10 File Server Storage Pools
- Storage System Alerts
- Failed HCS Tasks
- Failed System Tasks
- Tier Residency

Click Dashboard Settings to select reports to display.
The title bar of each report has a right arrow icon [–>] that when clicked, takes you to another tab to review related detail information.

For example, clicking the arrow icon for the **Storage System Alerts** report displays the Tasks & Alerts tab with summary and detail information for alerts.

Click the Dashboard tab to re-display the dashboard reports.

When viewing Dashboard reports, click links to review specific detail.

For example, in the **Top 10 Consumers** report, clicking a specific host or file-server link displays the Resources tab, expands the hosts or file-server tree, and displays related summary and volume information.

Related concepts
- [About checking system status in the dashboard](#) on page 397

Related tasks
- [Customizing the dashboard](#) on page 400

Customizing the dashboard

Select dashboard reports, position reports, and change the column layout.

Click Dashboard Settings to:
- Select reports you want to display using the check boxes. Select all reports using the column header.
- Clear reports using the check boxes. Clear all reports using the column header.
- Choose the number of display columns for reports.
- Restore the default dashboard by setting No. of Dashboard Columns to 2 and checking Report Name to select all of the reports.
- HCS will retain changes across login sessions.

Using the title bar of each report:
- Re-locate a report by dragging the title bar to a new location.
- Double-click the title bar to maximize the report.
- Double-click the title bar again to minimize the report.
- You can also use the maximize/restore button.
- There is an up-arrow/down-arrow button that hides a report except for the title bar, providing more area for other reports.
- Use the close button to remove the report. To display it again, use Dashboard Settings.
- If shown, the tool button (a wrench) is for configuration of the report.

Related concepts
- [About checking system status in the dashboard](#) on page 397
About the Storage Systems tree

Hitachi Command Suite lists registered storage systems and provides information summaries in the Storage Systems tree on the Resources tab.

The Storage Systems tree lists:
- Storage systems
- DP Pools
- Parity groups
- Volumes
 - Open-Allocated
 - Open-Unallocated
 - Open-Reserved
 - Mainframe-Unspecified
- External Storage

The Storage Systems tree is the starting point for changing the configuration of these resources.

Related tasks
- Viewing current storage system information on page 401

Viewing current storage system information

Configuration information for all managed resources is available on the Resources tab.

Procedure

2. Select the parent group from the Storage Systems tree to view a volume summary and additional detailed information in the application pane.
3. Click on the link for a storage system to access additional details.
4. Continue to view more details by clicking the links on subsequent views.

Related concepts
- About the Storage Systems tree on page 401

Viewing MP Blade information

You can view and edit the MP Blade information.

Procedure

1. On the Resources tab, expand the Storage Systems tree, and select a target storage system.
2. Choose one of the following options:
 - For Virtual Storage Platform G1000 storage systems:
 Select Components.
 - For other available storage systems:
 From the Actions list in the application pane, select Element Manager, and then from the Storage Systems tree, select Components.
3. On the Components window, click Chassis ID.

Result
The MP Blade information is displayed.

Tip: For details about editing MP Blade information, click Help.

About the Hosts tree
Hitachi Command Suite lists registered hosts by operating system in the Hosts tree on the Resources tab.

You can register both physical hosts and virtualization servers. You can also group the WWNs or iSCSI names used by specific storage systems and set up that group as a host. You select a host from the Hosts tree to allocate or unallocate volumes. Note that you can reference all registered hosts, but for the list of volumes that are allocated to each host, you can only reference volumes that fall within your resource group assignments.

Related tasks
- Viewing current host information on page 402

Viewing current host information
Information for all managed hosts is available on the Resources tab.

Procedure
1. On the Resources tab, select Hosts to expand the tree.
2. Select an operating system to see an information summary and a list of hosts on the application pane.
3. Click the link for a host to access additional details.
4. Continue to view more details by clicking the links on subsequent views.

Related concepts
- About the Hosts tree on page 402
About the file server view

You view information about the volumes and file systems of managed file servers through the file server view.

Information acquired by the Device Manager can be hierarchically displayed by registering a file server as a Device Manager resource. Users can select a file server from the file server view to allocate or unallocate.

You can execute setting operations such as allocation and unallocation by cluster or by file server (node).

Related tasks
- Monitoring file servers on page 403

Monitoring file servers

You can check on the status of your file servers and review volume and file system information.

Procedure
2. Expand the tree and select the resource whose information you want to browse.
3. In the application area, select the resource you want to reference.
4. Browse the information such as volumes and file systems.

Related concepts
- About the file server view on page 403

Analyzing storage system performance

This module describes procedures for analyzing storage system performance to determine if a storage system is the source of application performance problems.

About analyzing storage system performance

The Analytics tab provides information for analyzing storage system performance issues, and assists storage administrators in monitoring short term and long term trends.

Note: A Tuning Manager license is required to use the Analytics tab. For details on Tuning Manager, see the Hitachi Command Suite Tuning Manager User Guide.

Use the Analytics tab to check storage system performance by:
• Identifying performance problems for storage systems:
 o If there is an application performance issue, obtain the information needed to identify a logical group. For example, this could be the host where the problem occurred, the label of the volume, or the mount point. Based on the acquired information, specify the period (up to the past 30 days) for analyzing the performance and the logical group or the host that corresponds to the application in order to analyze the performance issue. Check that no resources exceed the threshold values and determine whether the cause of the performance issue is in the storage system.

• Analyzing and load balancing MP Blades or MP Units:
 o For Virtual Storage Platform G1000, Virtual Storage Platform, and HUS VM storage systems, you can identify MP Blade/Unit busy rates that exceed threshold values, and view resources placing a heavy load on the MP Blade/Unit. If possible, reduce the processing load or change the execution time of the processing using the resources. If you want to allocate resources to a different MP Blade/Unit, you can create a plan and simulate the effect of assigning resources to another MP Blade/Unit with a lower busy rate. To implement the plan, generate a raidcom command script based on the plan, and run the script using CCI to re-assign the resources.

Note: The term MP Blade is used for Virtual Storage Platform G1000 and Virtual Storage Platform. The term MP Unit is used for HUS VM.

• Performing periodic performance analysis of storage systems:
 o Analyze the performance of storage systems to periodically check that resources are being used appropriately.
 o The target storage system can be automatically analyzed at a specific interval; for example, weekly or monthly. For multiple storage systems, analysis schedules can be set to execute in a batch process to reduce the workload of storage system management. In addition, you can specify settings for performance analysis to send notifications by email of any errors that occur during analysis, as well as attach this information in the form of PDF-format analysis results reports to an email message.
 o By using these analysis results reports, you can check whether a resource exists that exceeds or nearly exceeds the threshold value. If there is a problem in the resource, check the detailed performance information from the report that corresponds to each resource metric. Based on performance information such as the number of I/O operations (IOPS) and data traffic displayed in the report, discuss what measures to take and perform any volume allocation or data migration tasks. Resolving performance problems can prevent errors.
 o By referring to past analysis results, problems can be specified and actions can be determined more easily. The analysis report can be

404 Monitoring managed resources and resolving alerts
Hitachi Command Suite User Guide
output to a PDF or CSV file. If output to a PDF file, the contents and a summary are created so that the report can be submitted as is. If output to a CSV file, the report is useful as a general-purpose file, and it can be effectively used to create materials by editing the format.

For more detailed performance information, by starting Performance Reporter, you can perform an analysis in minute units or analysis of long-term trends. If you import a report definition to Performance Reporter in Tuning Manager in advance, you can display a report with items that correspond to the items in the Identify Performance Problems wizard or a Health Check report.

An appropriate default value is set for the threshold values to judge if there are problems with storage system performance. You can change the threshold values for their environment if necessary. In accordance with the specified threshold values, the background of the displayed analysis result chart is colored for each threshold range. The Caution threshold range is displayed in yellow. The Warning threshold range is displayed in pink.

Related tasks

- Identifying storage system performance problems on page 405
- Creating periodic health check reports for storage systems performance analysis on page 412
- Analyzing and load balancing MP Blades or MP Units on page 407

Identifying storage system performance problems

With Tuning Manager installed, you can identify storage system performance problems from the Analytics tab.

Prerequisites

- Install Tuning Manager and link it to HCS.
- Register the Tuning Manager license.
- Import the report definition file in Tuning Manager before analyzing performance with the Analytics tab (ensure that you delete the report definition file for the previous version before importing the latest report definition file).
- Identify the date and time of the performance problem.
- Identify application information such as host or logical group name.

For information about linking with Tuning Manager and importing the report definition file in Tuning Manager, see the Hitachi Command Suite Administrator Guide.
Procedure

1. From the tree in the Analytics tab, select the target logical group and click Identify Performance Problems. You can also select a host or specific volumes in the target logical group.

2. Read the Introduction and click Next.

3. Based on the application information acquired from the host administrator, set the storage system type, volumes, and period to analyze, and then click Next.

4. In Overview, check for resources with performance threshold cautions:
 - For an MP Blade/Unit with threshold cautions, click Analyze MP Blades or Analyze MP Units to analyze MP Blade/Unit busy rate metrics and create a plan for reassigning resources to a less busy MP Blade or MP Unit to load balance host I/O requests.
 - For other resources that exceed a threshold value, there might be a problem with the storage system. If this is the case, click Next.

Tip: If there is no resource that exceeds a threshold value, it is likely that the problem does not originate from the storage system. If this is the case, close the Wizard.

5. Check the information for each metric displayed for each type of storage system type, and then click Next. Check the analysis report. The analysis result chart displays the Warning threshold range in pink.
 If you analyze enterprise-class storage (such as Virtual Storage Platform G1000, Virtual Storage Platform, Universal Storage Platform V/VM, Universal Storage Platform, or HUS VM), and when all volumes that belong to a parity group are included in the following list of volumes, the chart displaying Read Hit rate is not displayed:
 - ShadowImage S-VOLs
 - TrueCopy S-VOLs
 - Universal Replicator S-VOLs
 - Copy-on-Write Snapshot V-VOLs
 - Copy-on-Write Snapshot Pool volume
 - Thin Image V-VOLs
 - Thin Image Pool volume
 - DP pool volume

Tip: To view detailed performance information, start Performance Reporter. From Performance Reporter, display the report by selecting Identify Performance Problems under Identify Performance Problems and Health Check. You can analyze on a per-minute basis or on a long-term trend basis by setting the appropriate display conditions.

For details on using Performance Reporter, see the Hitachi Command Suite Tuning Manager User Guide.
Analyzing and load balancing MP Blades or MP Units

On the Analytics tab you can identify MP Blades and MP Units with a busy rate exceeding caution thresholds, and assign resources to an MP Blade or MP Unit with a lower busy rate to improve host application performance or balance I/O requests for disks with varying performance levels (HDD, SSD, FMD).

Prerequisites

- Install Tuning Manager and link it to HCS.
- Register the Tuning Manager license.
- Import the report definition file from Tuning Manager before analyzing performance with the Analytics tab (ensure that you delete the report definition file for the previous version before importing the latest report definition file).
- To analyze MP Blade or MP Unit busy rates, the storage system must be a Virtual Storage Platform G1000, Virtual Storage Platform, or HUS VM. For more information, see the Hitachi Command Suite Administrator Guide.
- The storage administrator must have permission to log in to the server where CCI is installed, and permission to use raidcom commands to modify the target storage system so that MP Blade or MP Unit resource assignments can be completed.

Tip: For simplification, the term MP Blade will be used in the steps below except for specific GUI elements. For HUS VM storage systems, the displayed term will be MP Unit.

Procedure

1. On the Analytics tab, choose an MP blade to analyze by doing one of the following:
 - Select a target host or logical group and click Identify Performance Problems. From the Overview page (if MP blade cautions appear) or from MP Blade page, click Analyze MP Blades.
• Expand the storage system tree, select a storage system from the application pane, and then click **Analyze MP Blades/Units**. The **Analyze MP Blades** window opens.

2. On the **Analyze MP Blades** window, verify that the **Analysis Target** information is correct.

3. In **MP Blades Busy Rate**, examine the busy rate graph and determine which MP Blade is a candidate (based on exceeding thresholds, or having the highest busy rate) for reassigning resources to a less busy MP Blade. If a target MP Blade is not already selected, select the target MP Blade and click **Choose as Target MP Blade**.

4. In **Selected MP Blades**, identify the resources causing the high busy rate.

5. After identifying busy resources for the target MP Blade, return to **MP Blades Busy Rate** and select the destination MP Blade to which you want to assign resources, and then click **Choose as Destination MP Blade**.

6. Select resources and click **Move** to assign resources to the destination MP Blade and create the assignment plan.

Tip: For target MP Blade resources that should be excluded from the assignment plan, select the resource and click the **Lock** button. For example, system disks or disks that cannot afford a temporary deterioration in response time due to cache operations incurred when reassigning the resource to another MP Blade.

7. Verify that the created plan is acceptable, and then click **Generate Script Commands** to create the raidcom command script.

8. Log in to the server where CCI is installed.

9. Execute the raidcom command script from CCI to physically reassign resources.

10. Run Performance Reporter to check that the busy rate for the target MP Blade and destination MP Blade are acceptable.

Tip: To view detailed performance information, start Tuning Manager from the Tools menu. By displaying Performance Reporter reports from Tuning Manager, you can analyze information on a per-minute basis or based on long-term trends. For details on how to use Performance Reporter, see the *Hitachi Command Suite Tuning Manager User Guide*.

Result

The busy rate for the target and destination MP Blades is adjusted by the reassignment of resources.

Related concepts

- [About analyzing storage system performance](#) on page 403
Related tasks

- [Identifying storage system performance problems](#) on page 405
- [Changing performance threshold settings to correctly analyze storage system performance](#) on page 419

Related references

- [Configuring the Performance Reporter display](#) on page 420

Metrics of volumes of Virtual Storage Platform G1000, Virtual Storage Platform, and HUS VM (Identify Performance Problems wizard)

Volume metrics for enterprise storage systems, as shown in the performance problem wizard, can help identify performance issues.

For each item used to analyze performance displayed in the Identify Performance Problems wizard, there are guideline values for evaluation if Hitachi Virtual Storage Platform G1000, Hitachi Virtual Storage Platform or Hitachi Unified Storage VM volumes (basic volumes, DP volumes, external volumes) are used.

When analyzing DP volumes, all caches, MP Blades (Virtual Storage Platform G1000, Virtual Storage Platform) and MP Units (Unified Storage VM) that are related to DP volumes are targeted. The target parity groups are those to which DP pool volumes that compose a DP pool belong. When analyzing external volumes, both the internal storage system and the external storage system are targeted.

In the Identify Performance Problems wizard, the status is judged as Caution when items exceed the following thresholds.

Table 12-1 Volume metrics for Virtual Storage Platform G1000, Virtual Storage Platform and Unified Storage VM (Identify Performance Problems wizard)

<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>Threshold</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Busy Rate</td>
<td>Caution: ≥ 100%</td>
<td>• With the default threshold value settings, the port status will not become [Caution].</td>
</tr>
</tbody>
</table>
| Cache | Write Pending Rate | Caution: > 30% | • Up to 30% is considered normal.
• Frequent or sustained episodes of 40% deserve attention.
• Frequent or sustained episodes to 50% require prompt remediation.
• At 70%, inflow control is enabled which is disruptive.
• High write pending is a sign of back end congestion. |
| Side File Usage Rate | Caution: ≥ 10% | • This is only applicable for TrueCopy Asynchronous.
• Little, if any, should be reported under normal conditions. High side file usage is a sign of downstream congestion. |
<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>Threshold</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Write Pending Rate + Side File Usage Rate | Caution: \(\geq 70\% \) | | • It is very important to look at both CWP and SF together since they share the same cache pool and cannot exceed \(70\% \).
• The closer CWP or SF, or CWP+SF is to \(70\% \), the closer the storage system is to major performance problems.
• When the write pending reaches \(70\% \), the storage system starts to destage write data until the write pending usage reaches \(30\% \), which will degrade performance. |
| MP Blade (Virtual Storage Platform G1000, Virtual Storage Platform) | Busy Rate | Caution: \(\geq 40\% \) | • - |
| MP Unit (HUS VM) | Busy Rate | Caution: \(\leq 50\% \) | • Parity Group utilization should be less than \(50\% \). |
| Parity Group | Busy Rate | Caution: \(\leq 25\% \) | • - |
| Read Hit | Caution: \(\leq 25\% \) | | |

Tip: If you want to view detailed performance information, start Performance Reporter. By doing so, you can perform an analysis per minute or a long-term trend analysis for more performance evaluation items.

Related concepts
- [About analyzing storage system performance](#) on page 403

Metrics of volumes of Universal Storage Platform V/VM and Hitachi USP (Identify Performance Problems wizard)

For each item used to analyze performance displayed in the Identify Performance Problems wizard, there are guideline values for evaluation if Universal Storage Platform V/VM or Hitachi USP volumes (basic volumes, DP volumes, external volumes) are used.

When analyzing DP volumes, all caches and CHPs (Channel Processors) that are related to DP pool volumes are targeted. The target parity groups and DKPs (Disk Processors) are those that are related to DP pool volumes that compose the DP pool. When analyzing external volumes, both the internal storage system and the external storage system are targeted.

In the Identify Performance Problems wizard, the status is judged as Caution when items exceed the following thresholds.
Table 12-2 Volume metrics for USP V/VM and Hitachi USP (Identify Performance Problems wizard)

<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>Threshold</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>Write Pending Rate</td>
<td>Caution: > 30%</td>
<td>- Up to 30% is considered normal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Frequent or sustained episodes of 40% deserve attention.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Frequent or sustained episodes to 50% require prompt remediation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- At 70%, inflow control is enabled which is disruptive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- High write pending is a sign of back end congestion.</td>
</tr>
<tr>
<td></td>
<td>Side File Usage Rate</td>
<td>Caution: ≥ 10%</td>
<td>- This is only applicable for TrueCopy Asynchronous.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Little, if any, should be reported under normal conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- High side file usage is a sign of downstream congestion.</td>
</tr>
<tr>
<td></td>
<td>Write Pending Rate + Side File Usage Rate</td>
<td>Caution: ≥ 70%</td>
<td>- It is very important to look at both CWP and SF together since they share the same cache pool and cannot exceed 70%.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The closer CWP or SF, or CWP+SF is to 70%, the closer the storage system is to major performance problems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- When the write pending reaches 70%, the storage system starts to destage write data until the write pending usage reaches 30%, which will degrade performance.</td>
</tr>
<tr>
<td>Channel</td>
<td>Processor Busy Rate</td>
<td>Caution: ≥ 45%</td>
<td>- 80% approximate maximum.</td>
</tr>
<tr>
<td>Parity Group</td>
<td>Processor Busy Rate</td>
<td>Caution: ≥ 50%</td>
<td>- Parity Group utilization should be less than 50%.</td>
</tr>
<tr>
<td></td>
<td>Read Hit</td>
<td>Caution: ≤ 25%</td>
<td>-</td>
</tr>
<tr>
<td>Disk Processor</td>
<td>Processor Busy Rate</td>
<td>Caution: ≥ 40%</td>
<td>-</td>
</tr>
</tbody>
</table>

Tip: If you want to view detailed performance information, start Performance Reporter. By doing so, you can perform an analysis per minute or a long-term trend analysis for more performance evaluation items.

Related concepts
- [About analyzing storage system performance](page 403)

Metrics of volumes of midrange storage systems (Identify Performance Problems wizard)

For each item used to analyze performance displayed in the Identify Performance Problems wizard, there are guideline values for evaluation if volumes (basic volumes, DP volumes) of HUS 100, Hitachi AMS 2000, Hitachi SMS, or Hitachi AMS/WMS are used.

When analyzing DP volumes, all processors and caches that are related to DP volumes are targeted. As for parity groups, those to which DP pool volumes,
composing a DP pool, belong are targeted. The target drives (physical disks) are all those that compose a DP pool.

In the Identify Performance Problems wizard, the status is judged as Caution when items exceed the following thresholds.

Table 12-3 Volume metrics for midrange storage (Identify Performance Problems wizard)

<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>Threshold</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Busy Rate</td>
<td>Caution: ≥80%</td>
<td>• Values over 66% are likely to be accompanied by response time increases due to contention.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Values over 50% will mean that the storage system will not be able to accommodate a controller failure without a reduction in workload capacity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• There are cases of resolving the problem by distributing the workload to other CPUs, or reducing the workload of such processes as TrueCopy, Copy-on-Write Snapshot, and ShadowImage.</td>
</tr>
<tr>
<td>Cache</td>
<td>Write Pending Rate on Controller 1, Write Pending Rate on Controller 0</td>
<td>Caution: >25%</td>
<td>• The maximum Write Pending level per Partition is 70%.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• There are cases of resolving the problem by distributing the workload to other controllers, adding to the cache, using high-speed drives, adding drives to parity groups, adding parity groups, or switching to RAID 1+0.</td>
</tr>
<tr>
<td>Parity Group</td>
<td>Write Hit Rate on Controller 1, Write Hit Rate on Controller 0</td>
<td>Caution: <100%</td>
<td>• -</td>
</tr>
<tr>
<td>Drive</td>
<td>Operating Rate on Controller 1, Operating Rate on Controller 0</td>
<td>Caution: ≥70%</td>
<td>• Values over 66% will result in response deterioration due to contention.</td>
</tr>
</tbody>
</table>

Tip: If you want to view detailed performance information, start Performance Reporter. By doing so, you can perform an analysis per minute or a long-term trend analysis for more performance evaluation items.

Related concepts

- [About analyzing storage system performance](#) on page 403

Creating periodic health check reports for storage systems performance analysis

You can create storage system health check (performance) reports, and control scheduling, the data collection time period, and data interval settings. You can review the health check reports when completed, and later by reviewing health check history.
Prerequisites

- Install Tuning Manager and link it to HCS.
- Register the Tuning Manager license.
- Import the report definition file in Tuning Manager before analyzing performance with the Analytics tab (ensure that you delete the report definition file for the previous version before importing the latest report definition file).
- To receive the results of Health Check execution by email, you must specify the SMTP server and edit the server properties file of the Device Manager server.
- For more details on these tasks, see the *Hitachi Command Suite Administrator Guide*.

Procedure

1. On the *Analytics* tab, select *Storage Systems*.
2. Select one or more storage systems, and click *Create Schedule*.
3. Specify the required items, and run the task.
4. After verifying that the task is complete, check for any performance problems. If there is a problem, check the Health Check report of the corresponding storage system. In accordance with the specified threshold values, the background of the displayed analysis result chart is colored for each threshold range. The Caution threshold range is displayed in yellow. The Warning threshold range is displayed in pink.
5. Verify the problem areas from the report information, and then analyze and identify the problems.

Tip: Observe the following guidelines when analyzing the report information:

- If you are using the UR Performance Analysis window of the *Replication* tab for Universal Replicator performance analysis, and a periodic refresh schedule has been configured for data collection, make sure that storage system health checks (performance reports) run at a different time to ensure the distribution of processing loads.
- If you want to analyze the performance of storage systems immediately, select the target storage systems, and then click *Run Health Check*. You can view the execution results in the *Task & Alerts* tab.
- If you want to delete a schedule, from *Schedule*, select the target schedule from the *Health Check Schedules* list, and then click *Delete Schedule*.
- The Utilization Reports (Threshold Exceeded) chart of a health check report displays the maximum value among the monitored targets that exceeded the threshold value. For other report charts, an average value of the monitored targets is displayed.
• If you want to view detailed performance information, start Tuning Manager from the Tools menu. By displaying Performance Reporter reports from Tuning Manager, you can analyzed based on a per-minute basis or on a long-term trend basis. For details on how to use Performance Reporter, see the Hitachi Command Suite Tuning Manager Software User Guide.

Tip: The following categories are part of the health check reports, but are not displayed when using the Analytics tab. These health check report categories represent storage system total front-end and back-end metrics that can be used with the Performance Reporter metrics to get a better understanding of storage system performance:

• Storage system total front-end IOPS: represents the total number of IOPS (inclusive reads and writes) issued to a storage system by its connected hosts.
• Storage system total front-end MB/s: represents the total number in megabytes per second that are read from or written to a storage system by its connected hosts.
• Storage system total back-end IOPS: represents the part of the storage system total front-end IOPS that was not served by the cache memory in the storage system.

Related concepts

• About analyzing storage system performance on page 403

Related tasks

• Editing periodic health check schedule on page 414
• Exporting health check reports on page 415
• Viewing and deleting health check reports on page 415

Editing periodic health check schedule

You can change a previously created storage system health check schedule.

Procedure

1. From the Analytics tab, select Schedule.
2. Select the schedule to change, and click Edit Schedule.
3. Specify the required items, and then execute the task.

Result

Display the window showing the target schedule in detail, and confirm that the schedule has been changed.
Tip: If you are using the UR Performance Analysis window of the Replication tab, and a periodic refresh schedule has been configured for data collection, make sure that storage system health checks (performance reports) run at a different time to ensure the distribution of processing loads.

Related concepts
- About analyzing storage system performance on page 403

Related tasks
- Creating periodic health check reports for storage systems performance analysis on page 412

Exporting health check reports
You can export health check reports to a PDF or CSV file for reporting purposes.

Procedure
1. From the Analytics tab, select Report History.
2. From the Reports list, select the report to export, and click Export Reports.
3. Select the required items and click Submit.
4. Select the export location for the health check report.

Result
A CSV file or PDF file is saved in the specified location.

Related concepts
- About analyzing storage system performance on page 403

Related tasks
- Viewing and deleting health check reports on page 415

Viewing and deleting health check reports
Previously created health check reports can be reviewed to check for and resolve performance issues.

Procedure
1. From the Analytics tab, select Report History.
2. From the Reports list, select the report to review, and click View Report of the Health Status column.
3. Review the displayed health check report.
 In accordance with the specified threshold values, the background of the displayed analysis result chart is colored for each threshold range. The
Caution threshold range is displayed in yellow. The Warning threshold range is displayed in pink.

Result
Based on the health check report, resolve performance issues if necessary.

Tip: To delete reports that are no longer needed, select the reports to be deleted, and click Delete Reports button.

Related concepts
- About analyzing storage system performance on page 403

Related tasks
- Creating periodic health check reports for storage systems performance analysis on page 412
- Exporting health check reports on page 415

Metrics of resources of Virtual Storage Platform G1000, Virtual Storage Platform and HUS VM (Health Check Report)

Volume metrics for enterprise storage systems, as shown in the health check report, can help identify performance issues.

The following provides the values for evaluating items that are used by Health Check to verify whether there is a performance problem for Virtual Storage Platform G1000, Virtual Storage Platform or HUS VM.

During Health Check, if items exceed the following thresholds, the status is judged as Caution or Warning.

Table 12-4 Resource metrics for Virtual Storage Platform G1000, Virtual Storage Platform and HUS VM (Health Check Report)

<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>Threshold</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache (by CLPRs), Cache Total (entire storage system)</td>
<td>Write Pending Rate</td>
<td>Caution: > 30%</td>
<td>• Up to 30% is considered normal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning: > 60%</td>
<td>• Frequent or sustained episodes of 40% deserve attention.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Frequent or sustained episodes to 50% require prompt remediation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At 70%, inflow control is enabled which is disruptive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High write pending is a sign of back end congestion.</td>
</tr>
<tr>
<td>MP Blade (Virtual Storage Platform G1000, Virtual Storage Platform or MP Unit (HUS VM)</td>
<td>Busy Rate</td>
<td>Caution: ≥ 40%</td>
<td>• -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning: ≥ 80%</td>
<td>• -</td>
</tr>
</tbody>
</table>
Table 12-5 Resource metrics of USP V/VM and Hitachi USP (Health Check Report)

<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>Threshold</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache (by CLPRs),</td>
<td>Write Pending</td>
<td>Caution: > 30%</td>
<td>• Up to 30% is considered normal.</td>
</tr>
<tr>
<td>Cache Total (entire</td>
<td>Rate</td>
<td>Warning: > 60%</td>
<td>• Frequent or sustained episodes of 40% deserve attention.</td>
</tr>
<tr>
<td>storage system)</td>
<td></td>
<td></td>
<td>• Frequent or sustained episodes to 50% require prompt remediation.</td>
</tr>
<tr>
<td></td>
<td>Side File</td>
<td>Caution: ≧ 10%</td>
<td>• At 70%, inflow control is enabled which is disruptive.</td>
</tr>
<tr>
<td></td>
<td>Usage Rate</td>
<td>Warning: ≧ 20%</td>
<td>• High write pending is a sign of back end congestion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• This is only applicable for TrueCopy Asynchronous.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Little, if any, should be reported under normal conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High side file usage is a sign of downstream congestion.</td>
</tr>
<tr>
<td>Parity Group</td>
<td>Max Busy Rate</td>
<td>Caution: ≧ 50%</td>
<td>• -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning: ≧ 80%</td>
<td></td>
</tr>
<tr>
<td>Disk Processor</td>
<td>Busy Rate</td>
<td>Caution: ≧ 40%</td>
<td>• -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Warning: $\geq 80\%$

Tip: If you want to view detailed performance information, start Performance Reporter. By doing so, you can perform an analysis per minute or a long-term trend analysis for more performance evaluation items.

Related concepts
- [About analyzing storage system performance](#) on page 403

Metrics of resources of midrange storage systems (Health Check Report)

The following provides the values for evaluating items that are used by Health Check to verify whether there is a performance problem for the HUS 100, Hitachi AMS 2000, Hitachi SMS, and Hitachi AMS/WMS platforms.

During Health Check, if items exceed the following thresholds, the status is judged as Caution or Warning.

Table 12-6 Resource metrics of midrange storage (Health Check Report)

<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>Threshold</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>Write Pending Rate on Controller 1, Write Pending Rate on Controller 0</td>
<td>Caution: $> 25%$ Warning: $> 50%$</td>
<td>- The maximum Write Pending level per Partition is 70%. - There are cases of resolving the problem by distributing the workload to other controllers, adding to the cache, using high-speed drives, adding drives to parity groups, adding parity groups, or switching to RAID 1+0.</td>
</tr>
<tr>
<td>Processor</td>
<td>Busy Rate</td>
<td>Caution: $\geq 80%$ Warning: $\geq 90%$</td>
<td>- -</td>
</tr>
</tbody>
</table>

Tip: If you want to view detailed performance information, start Performance Reporter. By doing so, you can perform an analysis per minute or a long-term trend analysis for more performance evaluation items.

Related concepts
- [About analyzing storage system performance](#) on page 403

418 Monitoring managed resources and resolving alerts Hitachi Command Suite User Guide
Changing performance threshold settings to correctly analyze storage system performance

The recommended threshold values for analyzing storage system performance are set in advance. If the recommended values are not suitable, change the threshold values. Use the metrics of volumes of each storage system as a reference to change the threshold.

There are four types of thresholds:

- Thresholds that are used only in the Identify Performance Problems wizard.
- Thresholds that are used only in the Health Check window.
- Thresholds that are used only in the Analyze MP Blades/Units window.
- Thresholds that are common to the Identify Performance Problems wizard, the Analyze MP Blades/Units window and the Health Check window.

Note: When you change a threshold common to the Identify Performance Problems, Analyze MP Blades/Units and Health Check, the change is applied to all analysis tools in their respective windows.

Tip: In accordance with the specified threshold values, the background of the displayed analysis result chart is colored for each threshold range. The Caution threshold range is displayed in yellow. The Warning threshold range is displayed in pink.

Procedure

1. On the **Analytics** tab, in **General Tasks**, select **Performance Threshold Settings**.
2. Select the series of the target storage system, and then use the metrics of volumes as a reference to change the threshold value for each metric of interest.
3. To change threshold settings, do the following:
 a. Select the target storage system.
 b. Select the analysis tool whose metrics you want to change (for example Analyze MP Blades/Units) or select **All** to display and change all available metrics.
 c. Change the caution and warning (Health Check only) thresholds to meet your requirements.
 d. Click OK.

Tip: Metrics might be deactivated based on your analysis tool selection.
Result
Metrics are changed for one or more analysis tools.

Related concepts
- About analyzing storage system performance on page 403

Related tasks
- Identifying storage system performance problems on page 405
- Analyzing and load balancing MP Blades or MP Units on page 407
- Creating periodic health check reports for storage systems performance analysis on page 412

Related references
- Metrics of volumes of Virtual Storage Platform G1000, Virtual Storage Platform, and HUS VM (Identify Performance Problems wizard) on page 409
- Metrics of volumes of Universal Storage Platform V/VM and Hitachi USP (Identify Performance Problems wizard) on page 410
- Metrics of volumes of midrange storage systems (Identify Performance Problems wizard) on page 411
- Metrics of resources of Virtual Storage Platform G1000, Virtual Storage Platform and HUS VM (Health Check Report) on page 416
- Metrics of resources of Universal Storage Platform V/VM and Hitachi USP (Health Check Report) on page 417
- Metrics of resources of midrange storage systems (Health Check Report) on page 418

Configuring the Performance Reporter display
After activating Performance Reporter, you can analyze detailed storage system information based on Identify Performance Problems results or Health Check report results.

The following table lists the configurable resources for displaying performance and status information based on storage system, selected resources, and the available Identify Performance Problems or Health Check information.

<p>	Table 12-7 Performance Reporter configurable resources for display
Storage System	Resource
Virtual Storage Platform G1000	LDEV Number
Virtual Storage Platform	CLPR Number
Unified Storage VM	Adaptor ID
	Processor ID (for MP Blade or MP Unit)
<table>
<thead>
<tr>
<th>Storage System</th>
<th>Resource</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Storage Platform V/VM</td>
<td>Processor ID</td>
<td>The numeric value after the last hyphen (-) in the MP column. For example, if the value of the MP column is MPU-L0-00, specify 00.</td>
</tr>
<tr>
<td>Hitachi USP</td>
<td>RAID Group Number</td>
<td>Character string with asterisk (*) wildcard characters before and after the value of the Parity Group column. For example, if the value of the Parity Group column is 1-3, specify 1-3. If you want to further narrow down the displayed information, change the wildcard character specification.</td>
</tr>
<tr>
<td>Hitachi USP</td>
<td>Port Name</td>
<td>Character string of the Port column.</td>
</tr>
<tr>
<td>Hitachi USP</td>
<td>Pool ID</td>
<td>Numerical value of the Pool column without "DP" at the beginning. For example, if the value of the Pool column is "DP 10", specify 10.</td>
</tr>
<tr>
<td>HUS 100</td>
<td>LDEV Number</td>
<td>Value of the Volume column</td>
</tr>
<tr>
<td>Hitachi AMS 2000</td>
<td>CLPR Number</td>
<td>Value of the CLPR column</td>
</tr>
<tr>
<td>Hitachi SMS</td>
<td>Adaptor ID</td>
<td>Character string before the second hyphen in the value of the Processor column. For example, if the value for the Processor column is CHA-1FL-7, specify CHA-1FL.</td>
</tr>
<tr>
<td>Hitachi AMS/WMS</td>
<td>Processor ID</td>
<td>Character string after the second hyphen in the value of the Processor column. For example, if the value for the Processor column is CHA-1FL-7, specify 7.</td>
</tr>
<tr>
<td>HUS 100</td>
<td>RAID Group Number</td>
<td>Character string before the second hyphen in the value of the Parity Group column, and with asterisk (*) wildcard characters before and after. For example, if the value of the Parity Group column is 1-2-1, specify 1-2. If you want to further narrow down the displayed information, change the wildcard character specification.</td>
</tr>
<tr>
<td>Hitachi AMS/WMS</td>
<td>Port Name</td>
<td>Character string of the Port column.</td>
</tr>
<tr>
<td>Hitachi AMS/WMS</td>
<td>Pool ID</td>
<td>Numerical value of the Pool column without the DP at the beginning. For example, if the Pool column value is DP 10, specify 10.</td>
</tr>
<tr>
<td>HUS 100</td>
<td>LDEV Number</td>
<td>Value of the Volume column. If the value of the Volume column starts with 0, such as 01, specify the numerical value without the 0 at the beginning.</td>
</tr>
<tr>
<td>Hitachi AMS 2000</td>
<td>CLPR Number</td>
<td>Value of the CLPR column</td>
</tr>
<tr>
<td>Hitachi AMS 2000</td>
<td>Controller</td>
<td>Controller value displayed in the chart title</td>
</tr>
<tr>
<td>Hitachi SMS</td>
<td>Processor ID</td>
<td>Character string of the Processor column</td>
</tr>
<tr>
<td>Hitachi SMS</td>
<td>RAID Group Number</td>
<td>Value of the Parity Group column</td>
</tr>
<tr>
<td>Hitachi SMS</td>
<td>Unit Number</td>
<td>Numerical value before the hyphen in the value of the Drive column. For example, if the value of the Drive column is 0-7, specify 0.</td>
</tr>
<tr>
<td>Hitachi SMS</td>
<td>HDU Number</td>
<td>Numerical value after the hyphen in the value of the Drive column. For example, if the value of the Drive column is 0-7, specify 7.</td>
</tr>
<tr>
<td>Hitachi SMS</td>
<td>Port Name</td>
<td>Character string without the second character, T, in the Port column. For example, if the value of the Port column is CTL0-B, specify CL0-B.</td>
</tr>
</tbody>
</table>
Related concepts

- About analyzing storage system performance on page 403

Related tasks

- Identifying storage system performance problems on page 405
- Analyzing and load balancing MP Blades or MP Units on page 407
- Creating periodic health check reports for storage systems performance analysis on page 412

Related references

- Metrics of volumes of Virtual Storage Platform G1000, Virtual Storage Platform, and HUS VM (Identify Performance Problems wizard) on page 409
- Metrics of volumes of Universal Storage Platform V/VM and Hitachi USP (Identify Performance Problems wizard) on page 410
- Metrics of volumes of midrange storage systems (Identify Performance Problems wizard) on page 411
- Metrics of resources of Virtual Storage Platform G1000, Virtual Storage Platform and HUS VM (Health Check Report) on page 416
- Metrics of resources of Universal Storage Platform V/VM and Hitachi USP (Health Check Report) on page 417
- Metrics of resources of midrange storage systems (Health Check Report) on page 418
- Performance Reporter and Analytics tab display differences on page 422

Performance Reporter and Analytics tab display differences

The displayed report information differs between the Analytics tab and Performance Reporter.

The following table describes how the displayed information of the Analytics tab corresponds to that of Performance Reporter.

Table 12-8 Analytics tab and Performance Reporter display differences

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Resource</th>
<th>Metric</th>
<th>Record Name (Record ID)</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify Performance Problems</td>
<td>Volume(^1)</td>
<td>IOPS</td>
<td>Virtual Storage Platform G1000, Virtual Storage Platform, Unified Storage VM, Universal Storage Platform V/VM, Hitachi USP: Logical Device Summary (PI_LDS, PI_LDS1, PI_LDS2, PI_LDS3)</td>
<td>Read I/O /sec + Write I/O /sec</td>
</tr>
<tr>
<td>Functionality</td>
<td>Resource</td>
<td>Metric</td>
<td>Record Name(Record ID)</td>
<td>Field Name</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUS 100, Hitachi AMS 2000, Hitachi SMS, Hitachi AMS/WMS: Logical Device Summary (PI_LDS)</td>
<td></td>
</tr>
<tr>
<td>Pool¹</td>
<td>Response Time</td>
<td>Pool Summary (PI_PLS)</td>
<td>((Read-Response-Rate x Read I/O /sec) + (Write-Response-Rate x Write I/O /sec)) / (Read I/O /sec + Write I/O /sec)</td>
<td>IOPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pool Summary (PI_PLS)</td>
<td>Read I/O /sec + Write I/O /sec</td>
</tr>
<tr>
<td>Port</td>
<td>Busy Rate</td>
<td>Pool Summary (PI_PTS)</td>
<td>Avg Xfer/sec / actual-port-speed x 100</td>
<td>IOPS</td>
</tr>
<tr>
<td>Cache</td>
<td></td>
<td></td>
<td>Cache Write Pending Usage % + Cache Side File Usage %</td>
<td></td>
</tr>
<tr>
<td>Parity Group</td>
<td>Read Hit</td>
<td>RAID Group Summary (PI_RGS)</td>
<td>Read Hit I/O Count / Read I/O Count x 100</td>
<td></td>
</tr>
<tr>
<td>Parity Group</td>
<td>Write Hit</td>
<td>RAID Group Summary (PI_RGS)</td>
<td>Write Hit I/O Count / Write I/O Count x 100</td>
<td></td>
</tr>
<tr>
<td>Health Check</td>
<td>System Total FE IOPS</td>
<td>Logical Device Aggregation (PI_LDA)</td>
<td>Read I/O /sec + Write I/O /sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Total FE MB/s</td>
<td>Logical Device Aggregation (PI_LDA)</td>
<td>Read Xfer /sec + Write Xfer /sec</td>
<td></td>
</tr>
<tr>
<td>System Total BE IOPS</td>
<td>IOPS</td>
<td>Logical Device Aggregation (PI_LDA)</td>
<td>Virtual Storage Platform G1000, Virtual Storage Platform, HUS VM, Universal Storage Platform V/VM, Hitachi USP: Read I/O /sec x (1 - Read Hit %) + Write I/O /sec HUS 100, Hitachi AMS 2000, Hitachi SMS, Hitachi AMS/WMS: Read I/O /sec x (1 - Read Hit %) + Write I/O /sec (1 - Write Hit %)</td>
<td></td>
</tr>
<tr>
<td>Busy PG by FE IOPS</td>
<td>IOPS</td>
<td>RAID Group Summary (PI_RGS)</td>
<td>Read I/O /sec + Write I/O /sec</td>
<td></td>
</tr>
<tr>
<td>Busy PG by FE MB/s</td>
<td>MB/s</td>
<td>RAID Group Summary (PI_RGS)</td>
<td>Read Xfer /sec + Write Xfer /sec</td>
<td></td>
</tr>
<tr>
<td>Busy Pools by IOPS</td>
<td>IOPS</td>
<td>Pool Summary (PI_PLS)</td>
<td>Read I/O /sec + Write I/O /sec</td>
<td></td>
</tr>
</tbody>
</table>
Functionality

<table>
<thead>
<tr>
<th>Resource</th>
<th>Metric</th>
<th>Record Name (Record ID)</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busy Pools by MB/s</td>
<td>MB/s</td>
<td>Pool Summary (PI_PLS)</td>
<td>Read Xfer /sec + Write Xfer /sec</td>
</tr>
<tr>
<td>Busy PG by BE IOPS</td>
<td>IOPS</td>
<td>RAID Group Summary (PI_RGS)</td>
<td>Hitachi USP: Read I/O /sec x (1 - Read Hit %) + Write I/O /sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hitachi SMS, Hitachi AMS/WMS: Read I/O /sec x (1 - Read Hit %) + Write I/O /sec (1 - Write Hit %)</td>
</tr>
</tbody>
</table>

1 Response Time for volumes and pools are displayed in *microseconds* in the Performance Reporter, and is displayed in *milliseconds* in the Analytics tab.

Related references

- [Configuring the Performance Reporter display](#) on page 420

Analyzing Universal Replicator performance

This module describes procedures for analyzing Universal Replicator performance to identify potential problems.

About analyzing Universal Replicator performance

The UR Performance Analysis window of the Replication tab provides information for analyzing performance problems with data transfers between the primary and secondary storage systems.

Universal Replicator (UR) asynchronously transfers data to the remote site. Delay times occur and differ depending on the data transfer timing. This delay is known as *C/T delta* and is an indicator for Recovery Point Objective (RPO).

You can use the UR Performance Analysis window to:

- Identify instances where the C/T delta threshold was exceeded. View the top five copy groups and their C/T delta rates in a chart. You can quickly identify copy groups that consistently exceed the maximum write time delay (C/T delta threshold).
- Analyze the C/T delta threshold against the performance of primary, secondary, and network resources. The analysis process supports two modes:
 - **Wizard mode**: a step-by-step guide that compares trends and helps users identify the cause of the problem.
 - **Advanced mode**: a selection of charts that lets advanced users correlate multiple trends and identify the problematic resource.
Related tasks

- Monitoring Universal Replicator performance on page 425
- Configuring network bandwidth for analysis on page 427
- Analyzing Universal Replicator performance in wizard mode on page 431
- Analyzing Universal Replicator performance in advanced mode on page 432

Related references

- Prerequisites for analyzing Universal Replicator performance on page 425
- Metrics for Universal Replicator performance analysis on page 429

Prerequisites for analyzing Universal Replicator performance

Before attempting analysis, verify the site configuration, necessary software, and user access controls.

You must satisfy the following requirements before using the UR Performance Analysis window:

- Ensure that your site configuration meets all the configuration requirements for Universal Replicator performance analysis described in the Hitachi Command Suite Administrator Guide.
- Ensure that Hitachi Tuning Manager and Replication Manager are installed and linked to HCS.
- Ensure that users have the necessary permissions (roles and resource access) for the UR Performance Analysis window of the Replication tab described in Required roles and resource groups by function on page 108.

⚠️ Note: The performance analysis function supports copy groups consisting of open volumes. Copy groups that are defined by device group, use multiple journal groups in a Universal Replicator MxN configuration, or use virtual command devices, are not supported.

Related concepts

- About analyzing Universal Replicator performance on page 424

Related tasks

- Monitoring Universal Replicator performance on page 425

Related references

- Required roles and resource groups by function on page 108

Monitoring Universal Replicator performance

Prerequisites

You must satisfy the following requirements before using the UR Performance Analysis window:
• Ensure that your site configuration meets all the configuration requirements for Universal Replicator performance analysis described in the Hitachi Command Suite Administrator Guide.
• Ensure that Hitachi Tuning Manager and Replication Manager are installed and linked to HCS.
• Ensure that users have the necessary permissions (roles and resource access) for the UR Performance Analysis window of the Replication tab.

Note: The performance analysis function supports copy groups consisting of open volumes. Copy groups that are defined by device group, use multiple journal groups in a Universal Replicator MxN configuration, or use virtual command devices, are not supported.

You can monitor Universal Replicator performance (C/T delta) from the UR Performance Analysis window. If you see problems, you can then perform an analysis to discover the root cause.

Tip: By default, performance data is collected every four hours, and configuration information (including storage systems, copy pairs, and pair management servers) is refreshed every 24 hours. The Refresh Performance Data button allows you to do a manual refresh of the performance data, and displays an option to refresh the configuration as well (Also refresh copy group information).

Procedure

1. Open the **Replication** tab.
2. Examine the C/T delta trend in the UR Performance Analysis window:
 • The five copy groups with the largest percentage of C/T delta threshold are displayed.
 • The text in the bar graph displays the actual C/T delta and threshold values.
 • The default Time Period is one day. Use the range buttons to adjust the view.
 • The **Copy Groups** tab includes a table with copy group information and key usage statistics.
 • For reference, the **Alerts** tab includes a summary of alerts that are created by Replication Manager.

Note: You cannot change alerts from the **Alerts** tab. You can modify them only from Replication Manager.

3. If the C/T delta threshold for a copy group is exceeded, you can perform an analysis:
 • In *advanced mode*, you can perform the analysis yourself by viewing a series of graphs to determine the root cause of the problem.
In wizard mode, you are guided through a selection of key metrics and presented with a summary of possible causes and solutions.

Caution: The following operations will cause previous C/T delta values and JNLG usage rates not to be displayed:

- Deleting copy pair configuration definition files
- Making changes to the pair management server that manages a target copy group, including changing the WWN

Note: You cannot access previous C/T delta values during a takeover operation (disaster recovery) because the relationship between the primary and secondary volumes is temporarily reversed. When the copy group relationship is restored (takeback), the data can be accessed again. For more information about disaster recovery operations, see the *Hitachi Command Suite Replication Manager User Guide*.

Related concepts

- About analyzing Universal Replicator performance on page 424

Related tasks

- Analyzing Universal Replicator performance in advanced mode on page 432
- Analyzing Universal Replicator performance in wizard mode on page 431
- Configuring network bandwidth for analysis on page 427

Related references

- Prerequisites for analyzing Universal Replicator performance on page 425
- Metrics for Universal Replicator performance analysis on page 429

Configuring network bandwidth for analysis

The UR Performance Analysis function gives you the option of supplying values for the effective network bandwidth.

The effective network bandwidth is the actual speed at which data can be transmitted on a remote path based on your replication environment. Check your network and supply a proper bandwidth value for each path group.

Tip:

- In addition to the main **UR Performance Analysis** screen, this option is also available during analysis (wizard and advanced mode).
- Setting the bandwidth is not required. If values are not set, a warning is displayed that can be ignored.
Procedure

2. Supply one value for all remote path groups or select each individually.

Related concepts
- About analyzing Universal Replicator performance on page 424

Related tasks
- Monitoring Universal Replicator performance on page 425

Related references
- Prerequisites for analyzing Universal Replicator performance on page 425
- Metrics for Universal Replicator performance analysis on page 429

Configuring metric thresholds for M-JNL analysis

The UR Performance Analysis window includes an option to set thresholds for the following metrics:
- Host Write Transfer Rate to M-JNL
- M-JNL Async Transfer Rate to RCU
- Host Write IOPS to M-JNL

The threshold values are used to plot a horizontal line in graphs indicating where the limit has been exceeded. Although defaults are defined, the values should be based on your replication environment.

Tip: In addition to appearing under General Tasks in the main screen, this option is also available during analysis (wizard and advanced mode).

Procedure

1. On the Replication tab, in General Tasks, select Configure Thresholds for M-JNL Analysis.
2. Select a metric using the M-JNL Threshold buttons.
3. Choose All copy groups or Select. You can select from the Available Copy Groups and use the Add/Remove buttons to modify the list of Selected Copy Groups.
4. Enter a new value (or revert to the default) and click Apply.
5. Repeat process for each of the desired metrics. Click Close when you are finished.
Metrics for Universal Replicator performance analysis

The following table lists the metrics used to analyze Universal Replicator performance. See the figure for an illustration of how each metric relates to the data flow.

Table 12-9 Universal Replicator performance metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
<th>Threshold Value / Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache Write Pending Rate</td>
<td>Write pending rate for the cache used by the MPB.</td>
<td>Caution: > 30%</td>
</tr>
<tr>
<td>Processor Busy Rate</td>
<td>Operating rate of the MPB.</td>
<td>Caution: > 40%</td>
</tr>
<tr>
<td>Journal (JNL) Usage Rate</td>
<td>Usage rate for the journal.</td>
<td>This metric does not directly lead to C/T delta degradation. The system status can be determined by checking JNLG usage. Secondary journal usage available in advanced mode only.</td>
</tr>
<tr>
<td>Array Port Transfer Rate</td>
<td>Amount of data output from the array port.</td>
<td>Caution: > network bandwidth value</td>
</tr>
<tr>
<td>Host Write IOPS to M-JNL</td>
<td>Average amount of data input from the host to the primary JNL per copy group (MBs per second)</td>
<td>Threshold value for graphs can be set as described in Configuring metric thresholds for analysis on page 428. Default: 12,000.</td>
</tr>
<tr>
<td>Host Write Transfer Rate to M-JNL</td>
<td>Frequency of write operations for the primary JNL per unit of time</td>
<td>Threshold value for graphs can be set as described in Configuring metric thresholds for analysis on page 428. Default: 250.</td>
</tr>
<tr>
<td>P-VOL Write Transfer Rate</td>
<td>Amount of data transmitted from the host or host group per P-VOL (MBs per second)</td>
<td>Available in advanced mode only.</td>
</tr>
<tr>
<td>M-JNL Async Transfer Rate to RCU</td>
<td>Average rate of transmission from M-JNL to R-JNL (MBs per second)</td>
<td>Threshold value for graphs can be set as described in Configuring metric thresholds for analysis on page 428. Default: 250.</td>
</tr>
<tr>
<td>Read M-JNL Process Time</td>
<td>Interval between when the MCU receives the RDJNL command and the MCU sends a data transmission completion command to the RCU (msec).</td>
<td>Available in advanced mode only.</td>
</tr>
<tr>
<td>End-to-End Journal Copy Time</td>
<td>Interval between when the RCU sends the RDJNL command to the MCU and the RCU receives a data transmission completion command (msec).</td>
<td>Available in advanced mode only.</td>
</tr>
<tr>
<td>R-JNL Transfer and Process Time</td>
<td>The time lag in network transmission between M-JNL and R-JNL.</td>
<td>This value represents the difference between the End-to-End Journal Copy Time and Read M-JNL Process Time. (If one of these values is not available, the R-</td>
</tr>
</tbody>
</table>
The following figure depicts points in the data flow associated with key metrics. This is not intended as a master reference for all metrics, but serves as an aid for performing an analysis in advanced mode. For example, the expanded portion shows the relationship between the Read M-JNL Process Time, R-JNL Transfer and Process Time, and the End-to-End Journal Copy Time.

Related concepts
- About analyzing Universal Replicator performance on page 424
Analyzing Universal Replicator performance in wizard mode

In wizard mode, the GUI guides you through the process of examining resource metrics and suggests possible solutions.

Prerequisites

You must satisfy the following requirements before using the UR Performance Analysis window:

- Ensure that your site configuration meets all the configuration requirements for Universal Replicator performance analysis described in the *Hitachi Command Suite Administrator Guide*.
- Ensure that Hitachi Tuning Manager and Replication Manager are installed and linked to HCS.
- Ensure that users have the necessary permissions (roles and resource access) for the UR Performance Analysis window of the Replication tab.

Note: The performance analysis function supports copy groups consisting of open volumes. Copy groups that are defined by device group, use multiple journal groups in a Universal Replicator MxN configuration, or use virtual command devices, are not supported.

Procedure

1. Open the **Replication** tab.
2. On the **Copy Groups** tab, select a copy group and click **Analyze UR Performance (Wizard Mode)**.
3. Read the **Introduction** and click **Next**.
4. Using the slider below the graph, choose a **Time Period** as instructed and then click **Next**.

Note: If you see cache or processor resources listed that are not associated with the copy group you are analyzing, execute **Refresh Storage System** on the **Administration** tab and then, select **Refresh Performance Data** on the **Replication** tab with the **Also refresh copy group configuration** check box selected.

- By default, Replication Manager polls information sources for copy pair status every 5 minutes. Depending on the data interval you set, this
can affect how the display is refreshed in the UR Performance Analysis window.

- By default, new performance data is collected through Hitachi Tuning Manager every four hours. A gray zone in the graph indicates uncollected data. If you click **Refresh Performance Data** at this point, the wizard closes and you restart this procedure when the task is complete.

5. On the displayed pages, examine each metric and use the checkbox to mark any resources that exceed the threshold. (You can select **Mark resources that exceed pre-set threshold** to select them all.) Click **Next** to proceed.

6. The **Results Report** page includes the detected issues and the possible causes and solutions based on your selections. Click the **Show Detail** link to display the resources and the graphed data.

Result

The solutions include instructions to check each resource to confirm the problem and apply the suggested solution.

Related concepts

- [About analyzing Universal Replicator performance](#)
- [About refreshing UR Performance Analysis data](#)

Related tasks

- [Analyzing Universal Replicator performance in advanced mode](#)
- [Exporting Universal Replicator performance reports](#)

Related references

- [Prerequisites for analyzing Universal Replicator performance](#)
- [Metrics for Universal Replicator performance analysis](#)

Analyzing Universal Replicator performance in advanced mode

In advanced mode, UR Performance Analysis creates graphs that are based on a selection of metrics to highlight possible performance problems.

Prerequisites

You must satisfy the following requirements before using the UR Performance Analysis window:

- Ensure that your site configuration meets all the configuration requirements for Universal Replicator performance analysis described in the *Hitachi Command Suite Administrator Guide*.
- Ensure that Hitachi Tuning Manager and Replication Manager are installed and linked to HCS.
• Ensure that users have the necessary permissions (roles and resource access) for the UR Performance Analysis window of the Replication tab.

Note: The performance analysis function supports copy groups consisting of open volumes. Copy groups that are defined by device group, use multiple journal groups in a Universal Replicator MxN configuration, or use virtual command devices, are not supported.

Note: If you see cache or processor resources listed that are not associated with the copy group you are analyzing, execute Refresh Storage System on the Administration tab and then, select Refresh Performance Data on the Replication tab with the Also refresh copy group configuration check box selected.

Procedure

1. Open the Replication tab.
2. On the Copy Groups tab, select a copy group and click Analyze UR Performance (Advanced Mode).

Result

The default dashboard includes four panes that plot metrics for S-VOL, M-JNL, R-JNL, and Network. Each panel has a Report list to choose metrics to plot in a graph. Use the maximize control to view a single pane.

Tip: The M-JNL pane includes reports featuring the P-VOL Write Transfer Rate, a metric that displays the amount of data transmitted from host or host group per P-VOL.

You can customize the display in several ways:

• Time Settings adjusts the time period for all panes.
• View Settings selects the panes to display in the dashboard.
• Each report includes a list for selecting the metric, and Configure Chart customizes the display:
 ○ You can select an existing entry from the Charts list to modify (or remove). Clicking Add creates a chart.
 ○ Chart Settings sets the title, chooses metrics for the left and right axes, and the chart position.
• When a pane is maximized, Vertical Comparison adds a second graph.
• When the Network pane is maximized, Volumes Sharing Path Group displays a list of primary volumes in the same path group as the copy group that is being analyzed. Use this list to identify other volumes and copy groups that may be affecting the performance of the target copy group.
Tip: The list of volumes also includes any TrueCopy Synchronous copy groups that use the same remote path as the target.

- You can also annotate a graph with memos, text windows that allow you to take notes.
 - Click Add Memo to start a new note. You can also add a note by double-clicking within a graph.
 - As with any window, you can move, minimize, or delete it using the controls in the title bar.
- Configure Thresholds for M-JNL Analysis changes the threshold value (horizontal red line) in the chart.

Tip: By default, Replication Manager polls information sources for copy pair status every 5 minutes. Depending on the data interval you set, this can affect how the display is refreshed in the UR Performance Analysis window.

Related concepts
- About analyzing Universal Replicator performance on page 424
- About the P-VOL Write Transfer Rate metric on page 435
- About refreshing UR Performance Analysis data on page 436

Related tasks
- Analyzing Universal Replicator performance in wizard mode on page 431
- Exporting Universal Replicator performance reports on page 434

Related references
- Metrics for Universal Replicator performance analysis on page 429
- Prerequisites for analyzing Universal Replicator performance on page 425
- Metrics for Universal Replicator performance analysis on page 429

Exporting Universal Replicator performance reports
You can export Universal Replicator performance data to a PDF file for reporting purposes.

Tip: You can also obtain UR performance data (in CSV form) using the following command line tools:
- GetCopyGroup
- RefreshReplicationPerformanceData
- GetReplicationPerformanceData

For more information, see the Hitachi Command Suite CLI Reference Guide.

The UR Performance Analysis window includes an export function to save output to a PDF file on the following panes:
- Analyze UR Performance (main screen)
- Results Report (wizard mode)
Analysis Target (advanced mode)

Procedure

1. If you are exporting data from the Analyze Universal Replicator performance main screen, first select a copy group from the Copy Groups tab.
2. Click Export. If you are exporting data from the main screen, you are prompted to select a Time Period.
3. For graphs in the advanced mode pane, any memos you created are included by default. To exclude your memos from the report, de-select Display the memos on the graphs.
4. Click Submit.
5. Select the export location for the report. The PDF file is saved in the specified location.

Tip: It is useful to save a C/T delta baseline so that you can later detect any gradual worsening of C/T delta performance over time. An accurate baseline requires stable host I/O. Wait for the completion of any settings and status changes that affect C/T delta (such as initial copies of newly added copy groups, or a copy group that shares a remote path). For best results, when using the Export function on the main screen, select a Time Period of one day (1d).

Related tasks

• Analyzing Universal Replicator performance in wizard mode on page 431
• Analyzing Universal Replicator performance in advanced mode on page 432

Related references

• Prerequisites for analyzing Universal Replicator performance on page 425

About the P-VOL Write Transfer Rate metric

The P-VOL Write Transfer Rate metric is used to calculate the amount of data written (in MB/sec) for each of the P-VOLs that comprise a copy group. Normally, the total of P-VOL Write Transfer Rate values in a copy group approximates the value of the Host Write Transfer Rate to M-JNL. The P-VOL Write Transfer Rate metric is available in the M-JNL pane of the advanced mode window.

The P-VOL Write Transfer Rate can be used to narrow down possible causes after identifying the copy group where C/T delta degradation has been observed. There are two basic scenarios:

• P-VOL traffic may be dominating network bandwidth.
For best results, first observe the Array Port Transfer Rate (amount of data output from a port) or the M-JNL Async Transfer Rate to RCU (amount of data output for each M-JNL). Once you have identified the specific copy group, you can use the PVOL Write Transfer Rate to determine which application/host uses the constituent P-VOLs, or which host group has written the largest amount of data.

- **P-VOL traffic may be overloading storage resources.**
 If you observe the Host Write Transfer Rate to M-JNL increase during or before a C/T Delta increase, storage resources (such as processor, cache, or parity group) may be overtaxed. In this case, analyze the P-Vol Write Transfer Rate to identify the responsible host/application. You can then choose to tune the application or add resources.

Tip: When you select a report that includes the P-VOL Write Transfer Rate, the graph includes a filter that permits you to narrow down the number of P-VOLs to be plotted.

About refreshing UR Performance Analysis data

By default, Replication Manager polls information sources for copy pair status every 5 minutes. (This setting is part of the Replication Manager GUI, not the UR Performance Analysis window.) If you have increased this polling setting (refresh value) to be longer than the data interval in the UR Performance Analysis window, the plot in the graph is updated less often (regardless of the data interval setting). For example, a refresh value of 30 minutes updates the graph every half hour, even if the data interval is set to 10 minutes. Setting the refresh value to less than 10 minutes helps ensure the plot is updated every 10 minutes (assuming data interval of 10 minutes). However, you might also need to consider the load balance if you reduce the refresh value because (in some cases) refreshing the copy pair status will actually take longer than the setting indicates.

Managing alerts

This module describes how to view, confirm, and manage alerts.

About alerts

Hitachi Command Suite regularly monitors storage system and file server (Hitachi NAS Platform v12.0 or later only) status.

Alerts are reported on the Dashboard, in the Storage System Alerts report. You can select the severity levels of alerts to be collected in this report by clicking the tool icon application pane.

Alert details can be confirmed on the Tasks & Alerts tab.

- Resolved alerts can be deleted manually from the list.
• The upper limit of the alerts that are managed by HCS is 500,000. When the number of alerts exceeds the upper limit, older alerts are deleted.

Alerts can also be delivered in email when SNMP traps are received from storage systems or file servers (Hitachi NAS Platform v12.0 or later, Hitachi NAS Platform F, and Hitachi Data Ingestor only). To configure the required settings, see the *Hitachi Command Suite Administrator Guide*.

Related tasks

- [Confirming an alert](#) on page 437

Confirming an alert

You can list, review, and delete alerts.

Procedure

1. On the **Tasks & Alerts** tab, click **All Alerts**.
2. Click on an alert to review the alert details and take appropriate action.

Result

The alert is resolved.

Tip: When the number of alerts for a storage system or file server node exceeds 10,000 alerts, memory might become insufficient. We recommend that you manually delete alerts that are no longer necessary. However, for HNAS, if the number of alerts for a single cluster exceeds 10,000, the alerts for that cluster are automatically deleted starting from the oldest alert.

As alerts are confirmed as resolved, select the resolved alerts, and click Delete Alerts.

Related concepts

- [About alerts](#) on page 436
Managing storage resources that have virtual IDs

This module describes specific functionality available for virtualized volume resources for which virtual IDs are assigned.

- About managing storage resources that have virtual IDs
- Displaying virtual ID information
- Allocating volumes to hosts with virtual IDs
About managing storage resources that have virtual IDs

When replacing an old storage system with a Virtual Storage Platform or HUS VM, you can use virtual IDs to migrate host resources (volumes) without stopping the host. Virtual IDs provide information about the old storage system, and are configured on the migration-destination resource. By using Device Manager, you can check virtual IDs after data migration and perform operations on a resource that has been assigned virtual IDs. Even if you can view the virtual ID of a resource, until data migration to the target resource is complete, you cannot perform operations on the resource.

During the three stages of data migration, accessing the resource data changes from using the physical ID to the virtual ID, as the following graphic shows:

- **Before data migration (using physical IDs)**
 Before data migration, a host uses physical IDs to perform operations on the migration-source resource. Operations can be performed on the resource by using Device Manager.

- **During data migration**
 The path from the host to the storage system is changed from the migration source to the migration destination. Configure virtual IDs on the migration-destination resource, and then migrate the data from the migration-source resource. On the migration-destination storage system,
while data migration is in progress, operations cannot be performed on the resource by using Device Manager.

- **After data migration (using virtual IDs)**
 After all of the target resources are migrated, operations can be performed on a resource by using Device Manager. After data migration, a host uses virtual IDs to access resources and perform operations on the migration-destination storage system.

Items such as virtual LDEV ID and virtual ports can be used to verify virtual ID information.

Check the correspondence between the virtual ID information received from the host administrator and the physical ID information to identify the target resource.

You can perform any of the following tasks on resources that have virtual IDs:
- Expand DP volumes
- Reclaim zero pages of DP volumes
- Edit tier relocation of HDT volumes
- Edit tiering policy of HDT volumes
- Manage data placement profiles of HDT volumes
- Allocate volumes\(^1\)
- Allocate like volumes\(^1\)
- Edit LUN paths
- Unallocate volumes\(^2\)
- Define copy pairs\(^3\)
- Change the status of a copy pair\(^3\)
- Migrate data by using Tiered Storage Manager
- Create logical group
- Create tier
- Edit volume labels
- Refresh volume labels

Notes:
1. For volumes for which no virtual ID is specified, you can specify new virtual IDs, and then allocate the volumes to host groups for which virtual IDs have already been specified.
2. You can also delete virtual IDs at the same time that volumes are unallocated.
3. To perform operations on a copy pair that contains volumes for which virtual IDs have been specified, you must update in advance the information (physical ID information) of the post-migration storage system with the configuration definition file of the copy pair. For details about the contents of configuration definition files, as well as the system configuration required to perform operations on copy pairs that contain...
volumes for which virtual IDs have been specified, see the Hitachi Command Suite Administrator Guide.

Related concepts

- About removing hosts and releasing associated resources on page 73

Displaying virtual ID information

You can display virtual ID information in the volume list to identify the target resource from the virtual ID information. Virtual ID information of resources can be displayed per host, storage system, or logical group.

Procedure

1. On the Resources tab, select Hosts, Storage Systems, or Logical Groups.
2. Expand the tree and select the target resource to display the volume list.
3. Click the Column Settings button.
4. From the displayed dialog box, select check boxes to display virtual ID information, such as Virtual LDEV ID and Virtual Port.

Result

Virtual ID information is displayed in the list of volumes, enabling you to map the virtual ID with the ID (physical ID) information assigned by the destination storage system.

Tip: After checking the virtual ID information for the volume, we recommend editing the volume label so that the volumes can be identified from the virtual ID information, thus enabling you to identify the target volumes from windows that do not display virtual ID information.

Virtual ID information can also be displayed in the tables for Allocate volumes, Allocate like volumes, Unallocate volumes, or Edit LUN Paths dialog boxes. If virtual IDs are set but you cannot set columns in the tables in these dialog boxes, virtual ID information will be automatically displayed.

Allocating volumes to hosts with virtual IDs

You can allocate volumes to hosts that belong to resource groups being used for data migration and that are using virtual IDs. You can also allocate volumes for which no virtual IDs are specified. In this case, such volumes are assigned new virtual IDs. A resource group used for a data migration that uses virtual IDs is the resource group specified for the storage system when migrating data, not a resource group specified in Hitachi Command Suite.
Prerequisites

- Identify the name of the target host.
- Identify the volumes to be allocated, if manually selecting such volumes.
- Identify the necessary volume capacity and size, if allocating volumes by specifying conditions.
- Verify that volumes to be allocated meet one of the following conditions:
 - The volumes belong to resource groups used for a data migration that uses virtual IDs, and the resource group is the same resource group to which the host group belongs.
 - The resource group ID of the storage system is 0 (it belongs to meta_resource). Note that meta_resource is a resource group specially managed on the storage system. It contains resources that are not a part of individual resource groups.

Procedure

1. On the Resources tab, select Hosts.
2. Expand the tree and select an operating system.
3. Select one or more hosts, and click Allocate Volumes.
4. Allocate volumes with existing virtual ID information, or volumes requiring virtual ID assignments as follows:
 a. To allocate volumes that belong to resource groups being used for a data migration that uses virtual IDs, reference the virtual ID information and manually select volumes, and then click Show Plan to register this as a task.
 b. To assign new virtual IDs to volumes that belong to meta_resource, and then allocate those volumes to a host, specify volume conditions or manually select volumes whose storage system resource group ID is 0 (meta_resource), and then click Show Plan to register this as a task. Use Column Settings to display storage system resource group IDs.
5. Confirm that the information in the plan summary is correct. If changes are required, click Back.
6. (Optional) Update the task name and provide a description.
7. (Optional) Expand Schedule to specify the task schedule. You can schedule the task to run immediately or later. The default setting is Now. If scheduled for Now, select View task status to monitor the task after it is submitted.
8. Click Submit. If the task is scheduled to run immediately, the task begins.
9. You can check the progress and the result of the task on the Tasks & Alerts tab. Click on the task name to view details of the task.

Using the Resources tab, select the hosts to verify that the designated volumes are allocated. Volumes for which no virtual ID is specified are assigned a new virtual ID. When allocating volumes whose storage
system resource group ID is 0, the volumes are registered in the same resource group as the host group.

Result

The designated volumes are allocated on the selected hosts.

Tip: When allocating like volumes, you can also allocate volumes for which no virtual IDs are specified, as described in this procedure.

Note: When unallocating volumes, you can also delete virtual IDs at the same time. To delete virtual IDs, specify conditions in Advanced Options > Virtual ID Information.
Linking related products

This module describes the link and launch feature that is used to access other related Hitachi Command Suite products.

- [] Launching other Hitachi Command Suite products
- [] Linking with Compute Systems Manager
Launching other Hitachi Command Suite products

Other integrated Hitachi Command Suite products for which you have a license installed and registered may be used via the link-and-launch feature.

About launching other Hitachi Command Suite products

By starting related products from HCS, you can execute more detailed settings or check the whole image of the storage resource.

An integrated single sign-on is used for all HCS products for which you have a license installed and registered. Related HCS products must be installed on the same system as HCS to use the link-and-launch feature.

Link-and-launch enables you to easily move across storage management software for a full view of storage resources. HCS provides link-and-launch integration with the following software applications:

• Hitachi Tuning Manager
• Hitachi Global Link Manager
• Hitachi Replication Manager
• Hitachi Storage Services Manager
• Hitachi Protection Manager
• Hitachi Compute Systems Manager
• File server management software
 You can start the file server management software from Device Manager, which allows you to view detailed information about file servers and create file systems when allocating volumes.
 • For Hitachi NAS Platform family, the file server management software is System Management Unit (SMU)
 • For Hitachi NAS Platform F and Hitachi Data Ingestor the file server management software is Hitachi File Services Manager (HFSM)

• Element Manager
 For storage systems other than Hitachi Virtual Storage Platform G1000, you can start Element Manager from Device Manager, which allows you to view storage system information or remotely operate the storage system.

Note: If you have problems starting HCS products or Element Manager, follow the instructions in the displayed message, check the network status, and then try again, or report to the server administrator which product could not be activated.

Related tasks

• Starting related products on page 447
• Starting related products from a list of hosts on page 447
• Starting Element Manager on page 449
Starting related products

Before you can start related products, you must register their licenses.

Procedure

1. From the **Tools** menu, select the product you want to start.
2. Navigate to the newly launched browser to access the product.

Related concepts

- [About launching other Hitachi Command Suite products](#)

Related tasks

- [Starting related products from a list of hosts](#)

Starting related products from a list of hosts

You must first register the licenses of all products you want to start.

Hitachi Protection Manager, Hitachi Protection Manager Console, and a Device Manager agent must be installed on each host managed by Device Manager. For more information, see the *Hitachi Protection Manager Console User’s Guide*.

Procedure

1. From the **Resources** tab, select **Hosts**.
2. From the **Actions** menu located in the corner of the application pane, select **Protection Manager**.
3. Navigate to the newly launched browser to access the product.

Related concepts

- [About launching other Hitachi Command Suite products](#)

Related tasks

- [Starting related products](#)

Notes on starting Element Manager

When starting the storage system software (Element Manager) from Hitachi Command Suite, keep the following in mind.

For HUS 100, Hitachi AMS 2000, Hitachi SMS, and Hitachi AMS/WMS:

- When Element Manager is left inactive for a certain period of time, auto log off is executed, and the user cannot use the software. If auto log off is executed when password protection is enabled, the user remains logged in
to the storage system, and cannot perform a refresh or create volumes on the storage system from HCS. In this case, restart Element Manager, and then manually close the window.

For details about auto log off, see the manuals for each storage system.

For HUS 100, Hitachi AMS 2000, and Hitachi SMS:
- Element Manager can be started from one management client for each storage system. Do not start Element Manager from multiple management clients at the same time.

For HUS 100 and Hitachi AMS 2000:
- When Account Authentication is used, executing the following operations while Element Manager is being started causes the user to remain logged in to the storage system, preventing operations on storage systems from Element Manager and HCS until the session times out:
 - Log out from HCS
 - Stop the services of Hitachi Command Suite common components and Hitachi Command Suite products by using the `hcmdssrv` command.
 - Close Element Manager with nodes (such as components and groups) below the storage system name selected on the navigation tree of Element Manager.
 - Closing Element Manager with the storage system name (route node) selected on the navigation tree causes the user to be logged out.

For details about the `hcmdssrv` command, see the *Hitachi Command Suite Administrator Guide*.

For details about session timeout times, see the manuals for each storage system.

For Hitachi AMS and Hitachi WMS:
- To use Firefox ESR 23 or later, you need to disable the setting that blocks non-SSL active content that coexists on SSL pages. In the address bar of Firefox, enter `about:config` to open the configuration window, and then change the value of `security.mixed_content.block_active_content` to `false`.

For SMI-S enabled storage systems:
- The management tool sometimes cannot start with an SMI-S enabled storage system because the URL of management tool is incorrect. In this case, you need to perform either of the following operations:
 - Use the `AddURLLink` command of Device Manager CLI to register in the Device Manager server the URL of the management tool of the SMI-S enabled storage system. For details about the `AddURLLink` command, see the *Hitachi Command Suite CLI Reference Guide*.
 - Review the settings of the SMI-S provider, and then refresh the SMI-S enabled storage system from Device Manager.
Related tasks

- Starting Element Manager on page 449

Starting Element Manager

Element Manager is a menu selection for launching native storage system management tools, which allows you to remotely view, configure, and operate storage systems, including SMI-S enabled storage.

Element Manager is available for enterprise storage systems, and specific mid-range storage systems, as soon as the storage system is registered with an IP address and user login information.

This includes Virtual Storage Platform, Universal Storage Platform V/VM, Universal Storage Platform, and mid-range systems such as HUS 100, Hitachi AMS 2000, and Hitachi SMS.

For example, after Virtual Storage Platform discover and registration completes, you are able to launch Storage Navigator using the Element Manager menu selection.

If Element Manager does not display in the Actions menu, the mid-range storage system may require environmental settings. See the following prerequisites.

Prerequisites

- Configure the environment for starting Element Manager.

 For details, see Element Manager in the *Hitachi Command Suite Administrator Guide*.

Procedure

1. On the **Resources** tab, select **Storage Systems**.
2. Select a storage system.
3. From the **Actions** menu in the application pane, select **Element Manager**.

Result

Confirm the storage system management tool is started and available for use.

Related tasks

- Starting System Management Unit (SMU) on page 450
- Starting Hitachi File Services Manager (HFSM) on page 450

Related references

- Notes on starting Element Manager on page 447
Starting System Management Unit (SMU)

In HCS, you can start the System Management Unit (SMU) software to perform Hitachi NAS Platform (HNAS) management tasks.

Prerequisites
Register the Hitachi NAS Platform family file server in Device Manager.

Procedure

1. From the Resources tab, select File Servers, then All File Servers.
2. In the Server/Cluster list, select the Hitachi NAS Platform (HNAS) cluster or file server, and click File Server Manager.

Result
The browser opens running System Management Unit (SMU).

Related tasks
- Starting Hitachi File Services Manager (HFSM) on page 450
- Starting Element Manager on page 449

Starting Hitachi File Services Manager (HFSM)

In HCS, you can start Hitachi File Services Manager (HFSM) software to perform Hitachi NAS Platform (HNAS F) or Hitachi Data Ingestor (HDI) management tasks.

Prerequisites
Register the Hitachi NAS Platform (HNAS F) or Hitachi Data Ingestor (HDI) file server in Device Manager.

Procedure

1. From the Resources tab, select File Servers, then All File Servers.
2. Open the tree and select a Hitachi NAS Platform (HNAS F) or Hitachi Data Ingestor (HDI) node, and from the Actions menu in the corner of the application pane, select File Server Manager.

Result
The browser opens running Hitachi File Services Manager (HFSM).

Related tasks
- Starting System Management Unit (SMU) on page 450
- Starting Element Manager on page 449
Linking with Compute Systems Manager

This module describes how to link to Compute Systems Manager.

About linking with Compute Systems Manager

If the host management product Hitachi Compute Systems Manager (HCSM) is installed on the Device Manager server and linked, information about hosts being managed by both products will be synchronized automatically when using Host Data Collector.

When Device Manager and Compute Systems Manager are linked, hosts are registered or updated simultaneously between the two products. For this reason, Compute Systems Manager hosts can automatically be registered or updated as hosts of Device Manager. Similarly, hosts that have been registered or updated in Device Manager can automatically be registered or updated in Compute Systems Manager. Therefore, it is no longer necessary for both the storage and server administrators to separately register or update the same hosts.

To synchronize host information, the requirements are:

- Hosts must have either a WWN or an iSCSI name.
 Among the Compute Systems Manager hosts, information about those that have a WWN or an iSCSI name is sent to Device Manager. Compute Systems Manager does not obtain iSCSI names when hosts are registered, but Device Manager hosts that have iSCSI names are also registered in Compute Systems Manager.

- Hosts must be normal hosts or virtual machines whose information was obtained by using Host Data Collector.
 Among Device Manager hosts, information about those that were registered using Host Data Collector is sent to Compute Systems Manager. Information about Compute Systems Manager hosts is also sent to Device Manager through Host Data Collector. Hosts that were registered by using a method other than Host Data Collector (such as a Device Manager agent or a host scan) and virtualization servers are not synchronized. For details about setting up Host Data Collector, see the Hitachi Command Suite Administrator Guide.

Note that even when Device Manager and Compute Systems Manager are linked, host deletions are not synchronized. Therefore, deleting a host from Device Manager does not affect Compute Systems Manager. Compute Systems Manager hosts that have been deleted from Device Manager can be manually re-synchronized, if necessary.

You can also start and perform operations in Compute Systems Manager from Device Manager by using the single sign-on functionality.
Resynchronizing hosts of Compute Systems Manager

Users can re-synchronize Compute Systems Manager hosts that have been deleted from Device Manager.

Procedure

1. In the Administration tab, select the Hosts tab, and click Add Hosts.
2. Select Re-sync Hosts with CSM, and then submit the task.
 The task is registered in the Data Collection Tasks tab.
3. Check the task status in the Data Collection Tasks tab.

Result

If the task completed, a host is added to the Hosts tab.

Related concepts

• About linking with Compute Systems Manager on page 451
Glossary

A

allocated volume

A logical device (LDEV) for which one or more host LUN paths are defined.

C

C/T

See consistency time.

C/T delta

The consistency time difference, or write-delay time, of data transfer between the primary and secondary storage systems.

cache

A set of RAM (Random Access Memory) modules used to store data temporarily.

cache logical partition

Virtual cache memory that is set up to be allocated to hosts that are in contention for cache memory. CLPRs can be used to segment storage system cache that is assigned to parity groups.

capacity

The amount of data storage space available on a physical storage device, generally measured in bytes (MB, GB, TB, and so on).

CLI

command line interface
See cache logical partition.

Command Control Interface (CCI)

Software used to control volume replication functionality (such as TrueCopy or ShadowImage) by means of commands issued from a host to a storage system. A command device must be set up in the storage system to enable the storage system to receive commands from CCI.

In an open system, Replication Manager uses the CCI configuration definition files to modify copy pair configurations and to acquire configuration information. Copy pair modification processing, such as splitting and resynchronizing copy pairs, is executed on the storage system via CCI.

concatenated parity group

The concatenation of two or more parity groups into one group. Using a concatenated parity group reduces the time that is required to access data (especially sequential data).

consistency time

A replication policy or threshold that indicates the amount of time that a replication target (volume, journal group, or extended consistency group, for example) is allowed to lag behind replication of the master, or source, volume.

control unit (CU)

Created in an enterprise-class storage system. Also called a CU image. The LDEVs created in a storage system are connected to a single CU, and a number is assigned to each CU for identifying its LDEVs. Therefore, volumes (LDEVs) in a storage system are specified by the CU number (CU#) and LDEV number.

copy pair

A primary and secondary volume pair linked by the volume replication functionality of a storage system. The primary volume contains original data, and the secondary volume contains the copy of the original.

Copy operations can be synchronous or asynchronous, and the volumes of the copy pair can be located in the same storage system (local copy) or in different storage systems (remote copy).

CSV

comma-separated values
D

data drive
A physical data storage device that can be either a hard disk drive (HDD) or a flash (solid-state) drive.

data pool
One or more logical volumes designated to temporarily store original data. When a snapshot is taken of a primary volume, the data pool is used if a data block in the primary volume is to be updated. The original snapshot of the volume is maintained by storing the changeable data blocks in the data pool.

DB

database

device (dev or DEV)
A physical or logical unit with a specific function.

DEVN
Device number that is assigned to each logical address when using an LDEV on a mainframe host.

DHCP
Dynamic Host Configuration Protocol

discovery
A process that finds and identifies network objects. For example, discovery may find and identify all hosts within a specified IP address range.

DKP
Disk processor

DP pool
The area where DP pool volumes (actual volumes) are registered. When a DP volume (virtual volume) receives a write operation from a host, that data is stored in a DP pool volume.

When Dynamic Provisioning and Dynamic Tiering must be differentiated, this document uses the terms HDP pool and HDT pool.
DP pool volume
An actual volume that is one of the volumes making up a DP pool.
When Dynamic Provisioning and Dynamic Tiering need to be distinguished, this manual uses the terms HDP pool volume or HDT pool volume.

DP volume
A virtual volume that is created from a Dynamic Provisioning (DP) pool (that is, it is associated with a DP pool).
When Dynamic Provisioning and Dynamic Tiering must be differentiated, this document uses the terms HDP volume and HDT volume.

E

EVS
Enterprise Virtual Server

external path
A path from a storage port of a storage system to a volume on a connected external storage system.

external volume
A logical volume whose data resides on drives that are physically located in an externally connected storage system.

F

FC
Fibre Channel

FCoE
Fibre Channel over Ethernet. An encapsulation of Fibre Channel frames over Ethernet networks. This allows Fibre Channel to use 10-gigabit Ethernet networks (or higher speeds) while preserving the Fibre Channel protocol.

flash module drive
A storage device, which is developed by Hitachi, that uses flash memory.

FMD
See flash module drive.
G

global-active device

A storage system feature that provides high-availability copy pairs to support simultaneous, uninterrupted host and cluster active-active I/O within and across geographically disparate data centers. This feature protects against storage system and site failures by providing continuous access to data.

GUI

graphical user interface

H

HBA

See host bus adapter.

HCP (Hitachi Content Platform)

A distributed storage system for fixed content data. Provides several protocols to present the data in standard directory structure.

HDP

See Hitachi Dynamic Provisioning.

HDT

See Hitachi Dynamic Tiering.

Hitachi Dynamic Provisioning (HDP)

Functionality that allocates virtual volumes to a host and uses the physical capacity that is necessary according to the data write request.

Hitachi Dynamic Tiering (HDT)

Functionality that is used with Hitachi Dynamic Provisioning that places data in a hardware tier according to the I/O load. For example, a data area that has a high I/O load is placed in a high-speed hardware tier, and a data area that has a low I/O load is placed in a low-speed hardware tier.

host bus adapter

One or more dedicated adapter cards that are installed in a host, have unique WWN addresses, and provide Fibre Channel I/O connectivity to storage systems, typically through Fibre Channel switches. Unlike
general-purpose Ethernet adapters, which handle a multitude of network protocols, host bus adapters are dedicated to high-speed block transfers for optimized I/O performance.

host group

Custom grouping of hosts that segregates hosts in a meaningful way, for example, a group of hosts that is segregated by operating system. A host group can be shared with another virtual port or another physical port for alternate path support.

HSD

Host storage domain. A group used to strengthen the security of volumes in storage systems. By associating and grouping hosts and volumes by storage system port, host storage domains can be used to restrict access from hosts to volumes.

Device Manager defines the host groups set up with the storage system LUN security function as host storage domains. Host storage domains for storage systems that do not have host groups are defined in the same manner as if they had been set with the LUN security function.

HTML

Hypertext Markup Language

HTTP

Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol Secure

I

I/O

input/output

internal volume

A logical volume whose data resides on drives that are physically located within the storage system.

Internet protocol (IP)

The protocol that governs the breakup of data messages into packets (units of data), the routing scheme for transmitting them, and the reassembly of the packets into the original data messages at the
destination. Most networks combine IP with a higher-level protocol called Transmission Control Protocol (TCP), which establishes a virtual connection between a source and a destination.

IOPS

I/Os per second

IP

See Internet protocol.

iSCSI

Internet Small Computer Systems Interface

J

JRE

Java Runtime Environment

JVM

Java Virtual Machine

JWS

Java Web Start

LAN

local area network. A computer network that spans a relatively small geographic area, such as a single building or group of buildings.

LDAP

Lightweight Directory Access Protocol

LDEV (logical device)

A volume created in a storage system. See also LU.

LDKC

Logical disk controller
logical group

A user-defined collection of managed resources (hosts and volumes) that are grouped according to business operations, geographic locations, or other organizational divisions. Logical groups can be public or private:

- Public logical groups are accessible by any HCS user.
- Private logical groups are accessible only by HCS users who belong to user groups that are associated with the logical group.

logical unit

A volume, or LDEV, created in an open storage system, or configured for use by an open-systems host, for example, OPEN-V. See also LDEV.

logical unit number

A unique management number that identifies a logical unit (LU) in a storage system. A logical unit can be an end user, a file, a disk drive, a port, a host group that is assigned to a port, an application, or virtual partitions (or volumes) of a RAID set.

Logical unit numbers (LUNs) are used in SCSI protocols to differentiate disk drives in a common SCSI target device, such as a storage system. An open-systems host uses a LUN to access a particular LU.

LU

See logical unit.

LUN

See logical unit number.

LUSE

LUN expansion; LU size expansion

M

main control unit

A storage system at a primary, or main, site that contains primary volumes of remote replication pairs. The main control unit (MCU) is configured to send remote I/O instructions to one or more storage systems at the secondary, or remote, site, called remote control units (RCUs). RCUs contain the secondary volumes of the remote replication pairs. See also remote control unit (RCU).
management client

A computer used to operate a graphical user interface client or a command-line interface client.

master journal

The primary, or main, journal volume. A master journal holds differential data on the primary replication system until the data is copied to the restore journal (R-JNL) on the secondary system. See also restore journal.

N

NAS

Network attached storage

NIC

Network interface card

P

pair status

Indicates the condition of a copy pair. A pair must have a specific status for specific operations. When a pair operation completes, the status of the pair changes to a different status determined by the type of operation.

path

A path from a storage system volume to a host group.

In this manual, the term "path" may mean a path, external path, or LUN path without making distinctions among them.

pool volume (pool-VOL)

A logical volume that is reserved for storing Copy-on-Write Snapshot data or Dynamic Provisioning write data.

primary volume

In a volume pair, the source volume that is copied to another volume using the volume replication functionality of a storage system. The data on the P-VOL is duplicated synchronously or asynchronously on the secondary volume (S-VOL).

properties file

A file that defines aspects of the operating environment. The operating environment can be modified by changing the appropriate properties file.
R

RACF (Resource Access Control Function)

Functionality for controlling user authentication and resource access on the mainframe host.

RADIUS

Remote Authentication Dial In User Service

RAID

Redundant Array of Independent Disks

A collection of two or more disk drives that presents the image of a single logical disk drive to the system. Part of the physical storage capacity is used to store redundant information about user data stored on the remainder of the storage capacity. In the event of a single device failure, the data can be read or regenerated from the other disk drives.

RAID employs the technique of disk striping, which involves partitioning each drive's storage space into units ranging from a sector (512 bytes) up to several megabytes. The stripes of all the disks are interleaved and addressed in order.

RAID level

The type of RAID implementation. RAID levels include RAID 0, RAID 1, RAID 2, RAID 3, RAID 4, RAID 5 and RAID 6.

recovery point objective

In business continuity planning, the maximum tolerable period in which data can be lost from an IT service due to a major incident.

refresh

To update the database using the most recent information.

remote control unit

A storage system at a secondary, or remote, site that is configured to receive remote I/O instructions from one or more storage systems at the primary, or main, site. See also main control unit.

resource group

A collection of resources that are grouped by one or more system resource types.
resource pool
A type of resource group to which resources of a virtual storage machine in a Virtual Storage Platform G1000 system belong, if those resources have not been added to another resource group. There are two types of resource pools: the resource pool on the default virtual storage machine and the resource pool that is created automatically for each virtual storage machine that you create on a VSP G1000 system.

restore journal
The secondary, or remote, journal volume. A restore journal holds differential data on the secondary replication system until the data is copied to the secondary volume (S-VOL). See also master journal (M-JNL).

role
Permissions that are assigned to users in a user group to control access to resources in a resource group. Resource groups can be assigned to different user groups with different roles.

RPO
See recovery point objective.

S

SAN
storage area network. A network of shared storage devices that contain disks for storing data.

SAS (Serial Attached SCSI)
A replacement for Fibre Channel drives in high performance applications. See SCSI.

SATA
Serial Advanced Technology Attachment. A computer bus technology primarily designed for the transfer of data to and from hard disks and optical drives. SATA is the evolution of the legacy Advanced Technology Attachment (ATA) interface from a parallel bus to serial connection architecture.

SCSI (Small Computer System Interface)
Standards that define I/O buses primarily intended for connecting storage systems and devices to hosts through host bus adapters.
secondary volume

After a backup, the volume in a copy pair that is the copy of the original data on the primary volume (P-VOL). Recurring differential data updates keep the data in the S-VOL consistent with the data in the P-VOL.

Secure Sockets Layer (SSL)

A common protocol for managing the security of message transmission over the Internet.

Two SSL-enabled peers use their private and public keys to establish a secure communication session, with each peer encrypting transmitted data with a randomly generated and agreed-upon symmetric key.

SLPR

Storage Local Partition

SMU

System Management Unit

SNMP

Simple Network Management Protocol

SSD

Solid-state drive

storage pool

A collection of system drives or the logical container of a file system. Storage pools are created in the Hitachi NAS Platform family of products. Storage pools are also called *spans*.

system drive

The basic (logical) storage element that is managed by the Hitachi NAS Platform family of products. A system drive is equivalent to a storage system volume.

T

tiered storage

A layered structure of performance levels, or tiers, that matches data access requirements with the appropriate performance tiers.
U

unallocated volume

A volume (LDEV) for which no host paths are assigned.

URL

Uniform Resource Locator

user group

A collection of users who have access to the same resources and have the same permissions for those resources. Permissions for users are determined by the user groups to which they belong. Users and resource groups can be assigned to multiple user groups.

V

virtual storage machine

A virtual storage system that you create on a VSP G1000 system that allows multiple resource groups to be treated as a single device.

VOLSER

The label of a volume assigned by the mainframe host.

volume (vol or VOL)

A name for the logical device (LDEV), or logical unit (LU), or concatenated LDEVs, that are created in a storage system that have been defined to one or more hosts as a single data storage unit.

W

web client

An application that is used on a client machine to access a server on which management software is installed. A web client contains two parts: dynamic web pages and the web browser.

WWN nickname

World wide name nickname. A name that is set for the WWN of an HBA that identifies which HBA to operate on. The WWN nickname easily identifies accessible HBAs that are registered in a host group. You can display a list of WWN nicknames to confirm target HBAs for a host while you edit LUN paths during or after volume allocation or when you replace an HBA.
Index

A
- access attributes
 - changing to read/write 174
- access control 84, 96
 - users 94
- accounts
 - creating 87
 - editing 88, 89
 - lock status 91
 - locking (automatic) 42
 - managing (overview) 84
 - strong passwords 41
- adding redundancy
 - global-active device 295
- agents
 - downloading 43
- alerts
 - confirming 437
 - deleting 437
 - description 436
- allocating existing volumes
 - global-active device 293
- allocating new pairs
 - global-active device 291
- analytics tab
 - display differences 422
- Attribute command 174
- authentication
 - external, groups 92
 - external, users 91

B
- bottleneck
 - detection 405, 419
 - MP blade, unit 407
 - overview 403
- browser
 - clearing cache 38
 - configuring (overview) 32

C
- checking status
 - global-active device 297
- CLI
 - downloading 43
- CLPR
 - creating 318
 - deleting 323
 - editing 321
 - migrating 320, 322
- clustered-host storage
 - (overview) 210
 - creating 211
- command devices
 - global-active device 289
- Compute System Manager 452
 - linking 451
- copy pairs
 - defining 309
 - managing (overview) 307
 - operations 308
 - status, changing 308–310
 - status, deleting 311
- creating a report 380
- creating file systems, NAS 245
- criteria search
 - dialog box 372
- CSV file 377
 - file server 376
 - hosts 375, 378
 - logical groups 377
 - types 375
- custom
 - roles 105

D
- dashboard
 - accessing 399
 - customizing 400
 - description 397
- data collection tasks
 - restarting 393
 - status 392
Data Collector
downloading 43
data migration
dialog box 341
data mobility
overview 324
data optimization
logical group 328
pools 329
data transfer speed
Fibre Channel ports 220
deleting a report 380
discontinue
global-active device 305
download software 43

E
element manager
notes 447
starting 449
Element Manager
starting products 447
EVS, updating HCS linkage 80

F
failures
global-active device 303
Fibre Channel ports
configuring 222
data transfer speed 220
file server
adding volumes 194
export CSV 376
unallocating volumes 215
file server, name change 79
file servers
registering 78
file servers, registering 75
file systems
creating, HNAS 231
Firefox
security 36
functions
roles, permissions 108

G
global-active device
adding redundancy 295
allocating existing volumes pairs 293
allocating new pairs 291
checking status 297
command devices 289
discontinue 305
failures 303
host path failure 304
monitoring pairs 299
overview 276
prerequisites 284
protecting pairs 298
quorum disk 287
replication paths 286
selecting storage 285
setup window 282
unallocating 301
unallocating volume 302
virtual storage machine 290

H
HBA
add 316
optimize 315
remove 228, 230
replace, exchange 227
HCS
components 20
configuration (overview) 32
features 21
features, new 22
login, licensing 39
navigating the interface 27
process flow 26
system configuration 23
HDI, create file systems HFSM 3.1 258
health check
edit schedule 414
exporting 415
history 415
scheduling 412
Help
navigating 29
high temperature mode
enabling 318
high temperature mode, about 317
HNAS F or HDI file system
deleting 260
HNAS F/HDI
file systems/shares 254
HNAS F/HDI, create file systems HFSM 3.2+ 257
HNAS F/HDI, file system settings HFSM 3.1+ 259
HNAS F/HDI, HFSM workflow 255
HNAS F/HDI, launching HFSM 450
HNAS, launching SMU 450
host path failure
global-active device 304
host workflow
detecting, merging 69
hosts
change manually registered 71
device manager updates 72
exporting 375, 378
HDC updates 70
registering, about 61
registering, HDC 64
registering, host scan 66
registering, merge host 67
registering, methods 61
registering, WWN/iSCSI 65
removing 74
removing, about 73
settings, information 68
starting products 447
viewing 402, 403
Hosts view (overview) 402

I
IE browser
pop-up blocking 34
Internet Explorer
security 35

J
Java Web Start
clearing cache 38
log output 129
multiple JREs 38
Java Web Start 6.0/7.0 37

L
launching
optional software 446
launching other products 446
license
management 44
registering 44
license key
types 45
licenses
checking 45
licenses, viewing 49
log output 129
logging in 40
logging on 39
logical groups
creating 355
defined 350
deleting 358
editing 357
exporting 377
operations, performing 357
reports, viewing 356
LUN paths
editing host group information 226
editing paths in host clusters 224
editing WWN nicknames 224, 226
managing WWN nicknames 223
LUN security
enabling on ports 218
LUN security on ports
disabling 219
LUSE
expansion 146, 147
releasing 148

M
managing (overview) 96
metrics 410, 411, 417, 418, 429
metrics, health check 416
metrics, performance wizard 409
monitoring
overview 396
monitoring pairs
global-active device 299
MP Blade
viewing 401

N
name resolution
management server 33
NAS
configuring 237
NAS Platform file shares
deleting 253
NAS Platform file system
deleting 250
NAS Platform storage pool
deleting 245
NAS, add file shares 251
NAS, changing file system settings 248
NAS, changing storage pool name 11.3 or later 241
NAS, creating storage pools
earlier than v11.3 242
v11.3 or later 239
NAS, edit file shares 252
NAS, environment settings 77
NAS, expand file system 247
NAS, expand storage pool
v11.3 or later 240
NAS, expanding storage pools
earlier than v11.3 243, 244
NAS, file system capacity 238
NAS, LUN paths 239
NAS, mount 249
NAS, parity groups pools 236
NAS, unmount 249
NAS, Workflow 234
NAS/HDI, file share concepts 260
navigating
Help 29
O
overview
 global-active device 276

P
P-VOL Write Transfer Rate 435
pair management 308
parity group
 creation 134, 135
 deleting 138
 deletion 137
parity groups
 create, dialog box 136
password
 changing 89, 90
path management 223, 366
performance
 optimizing by setting data transfer speed for a Fibre Channel port 220
performance reporter
 display configuration 420
display differences 422
permissions
 by function 108
 changing 90
policy
 User ID, password 87
pools
 deleting 172
threshold, modifying 172
 creating 162, 171
 creating, dialog box 164
 expanding or converting 169
 expanding volumes 173
 overview 160
 verifying 168
port scan and volume discovery 152
prerequisites
 global-active device 284
profile
 editing 88, 89
 protecting pairs
 global-active device 298

Q
quorum disk
 global-active device 287

R
reclaiming zero pages 174
replication
 UR wizard 431
 analytics, UR expert 432
 metric thresholds 428
 performance 425
 Replication, bandwidth 427
 Replication Manager 307
 replication paths
 global-active device 286
 Report Viewer window 379
 reports
 downloading 378
 DP pools, ranking 326
 logical groups, ranking 326
types 375
 using 378
 resource groups
 creating 100
 deleting 101
 editing 100
 overview 97
 prerequisites 99, 268
 resource labels
 editing 365
 importing 366
 overview 364
 searching 365
 resynchronizing hosts 452
 roles
 custom 105
 user 104

S
search
 exporting CSV file 377
security
 about 41
 account lock status 91
 account locking 42
 Firefox 36
 Internet Explorer 35
 strong passwords 41
 warning banner 42
selecting storage
 global-active device 285
setup window
 global-active device 282
SMI-S 345, 346
software
 downloading 43
storage
 allocation (overview) 133
 monitoring (overview) 396
 optimization, about 314
 refreshing status 59
 registering (overview) 55
 searching (overview) 369
tier-based management 358
virtualization with pools 160
virtualized 132
virtualized tiers 175
Storage Navigator
reports 378
storage resources
searching 370, 371
storage systems
editing 58, 129
logical groups 357
refreshing 60
registering 57
registering, prerequisites 55
viewing 401
Storage view
about 401
system tasks
troubleshooting 391
status 389

T
tasks
about 382
canceling (scheduled) 387
data retention 385
deleting 389
failed 387, 390
rescheduling 386
restarting failed or stopped 388
status 385
stopping (running) 386
summary, moving 387, 390
tiers
creating 359
deleting 361
expanding 360
performance 359
storage management 358

U
unallocating
global-active device 301
unallocating volume
global-active device 302
Universal Replicator
performance 424, 435
upgrade
clearing cache 38
UR Performance Analysis window
prerequisites 425
refresh 436
user
roles 104
user accounts
deleting 94
password, changing 90
passwords 89
user group
editing 128
user groups
creating 127
deleting 129
overview 102
users
access control 94
creating 87
lock status 91
locking (automatic) 42
managing (overview) 84
password, changing 89, 90
permissions, changing 90
profile, editing 88, 89
viewing a report 378
virtual IDs
displaying 442
volume allocation 442
volume migration 440
virtual storage machine
allocating volumes 270
global-active device 290
virtual storage machines
about 264
creating 269
deleting 273
editing 271
virtualize volumes dialog box
volumes, virtualize 155
virtualizing tiers
overview 175
volume
allocation 198, 199
volumes
allocating 192, 193, 195, 196, 199, 211
allocating (overview) 144, 188
allocating, dialog box 200
allocating, prerequisites 190, 192
creating 140, 146
creating (overview) 139, 145
creating, dialog box 141
data migration 332
data migration, notes 332
data placement profile, applying 186
data placement profile, creating 183
data placement profile, editing 185
data placement profile, scheduling 187
data placement profile, updating 184
data placement, notes 182
migrating (overview) 330
migrating data in, prerequisites 187, 338, 339
pair management 307
port scan 152
quick format 140
shredding 144
tier relocation, editing 180
tier relocation, monitoring 178
tier relocation, scheduling 179
-tier relocation, starting 178
-tiering policy, applying 180
-tiering policy, customizing 181
-unallocating 214
-unallocating (overview) 213
-unallocating, dialog box 216
-unallocating, prerequisites 214
-unvirtualizing 154
-virtualizing (overview) 149
-virtualizing discovered external storage system 151
-virtualizing undiscovered external storage system 152

W
-warning banner
-setting 42
-Web client
-configuring (overview) 32
-WWN
-acquiring, conditions 63
-nicknames 59, 200, 223
-WWN nickname
-editing 368
-WWN nicknames
-overview 366
Hitachi Data Systems

Corporate Headquarters
2845 Lafayette Street
Santa Clara, California 95050-2639
U.S.A.
www.hds.com

Regional Contact Information

Americas
+1 408 970 1000
info@hds.com

Europe, Middle East, and Africa
+44 (0) 1753 618000
info.emea@hds.com

Asia Pacific
+852 3189 7900
hds.marketing.apac@hds.com